scholarly journals Case Report: Next-Generation Sequencing in Diagnosis of Pneumonia Due to Pneumocystis jirovecii and Cytomegalovirus in a Patient With HIV Infection

2021 ◽  
Vol 8 ◽  
Author(s):  
Yirui Xie ◽  
Bing Ruan ◽  
Lingxiao Jin ◽  
Biao Zhu

Background: Pulmonary infections remain a significant cause of morbidity and mortality in immunocompromised patients. The pathogens spectrum of pulmonary infection that can affect patients with human immunodeficiency virus (HIV) is wide such as bacterial, fungal, viral, parasitic organisms, and so on. The risk of multi-pathogenic pneumonia is higher in HIV-infected patients. However, the fast and accurate diagnosis of multi-pathogenic pneumonia is challenging because of the limitations of current conventional tests.Case Presentation: Here, we report a case of pneumonia due to Pneumocystis jirovecii and cytomegalovirus (CMV) in a 22-year-old male with newly diagnosed HIV infection. Blood tests revealed a low CD4 count, a chest computed tomography (CT) scan showed extensive ground-glass opacities in the bilateral lung with multiple cavity lesions in the left upper lung. Microscopic examination of stained sputum and bronchoalveolar lavage fluid (BALF) smear specimens did not find any pathogens. There was also no evidence of pathogens known to cause pneumonia in bacteria and fungi culture tests and virus antibodies such as EBV, CMV, and COVID-19. The nucleic acid of CMV in blood was reported by quantitative PCR. Next-generation sequencing (NGS) analysis of BALF specimens identified a large number of P. jirovecii and CMV reads, and confirmed the diagnosis of pneumonia due to P. jirovecii and CMV. Following the patient's treatment with anti-PCP and anti-CMV, the patient was cured and discharged.Conclusions: This case highlights the combined application of NGS in the clinical diagnosis of multi-pathogenic pneumonia in an HIV-infected patient. NGS is proposed as an important adjunctive diagnostic approach for identifying pathogens of multi-pathogenic pneumonia in HIV-infected patients.

Author(s):  
Xu Chen ◽  
Shuizi Ding ◽  
Cheng Lei ◽  
Jieli Qin ◽  
Ting Guo ◽  
...  

Background. Metagenomic next-generation sequencing (mNGS) has made a revolution in the mode of pathogen identification. We decided to explore the diagnostic value of blood and bronchoalveolar lavage fluid (BALF) as mNGS samples in pneumonia. Methods. We retrospectively reviewed 467 mNGS results and assessed the diagnostic performance of paired blood and BALF mNGS in 39 patients with pneumonia. Results. For bacteria and fungi, 16 patients had culture-confirmed pathogen diagnosis, while 13 patients were culture-negative. BALF mNGS was more sensitive than blood mNGS (81.3% vs. 25.0%, p=0.003), and the specificity in BALF and blood mNGS was not statistically significant different (76.9% vs. 84.6%, p=0.317). For 10 patients without culture test, treatments were changed in 2 patients. For viruses, Epstein-Barr virus was positive in blood mNGS in 9 patients. Human adenovirus was detected in both BALF and blood mNGS in 3 patients. Conclusion. Our study suggests that BALF mNGS is more sensitive than blood mNGS in detecting bacteria and fungi, but blood also has advantages to identify the pathogens of pneumonia, especially for some viruses.


Author(s):  
Altuğ Koç ◽  
Elçin Bora ◽  
Tayfun Cinleti ◽  
Gizem Yıldız ◽  
Meral Torun Bayram ◽  
...  

2020 ◽  
Vol 16 ◽  
Author(s):  
Pelin Telkoparan-Akillilar ◽  
Dilek Cevik

Background: Numerous sequencing techniques have been progressed since the 1960s with the rapid development of molecular biology studies focusing on DNA and RNA. Methods: a great number of articles, book chapters, websites are reviewed, and the studies covering NGS history, technology and applications to cancer therapy are included in the present article. Results: High throughput next-generation sequencing (NGS) technologies offer many advantages over classical Sanger sequencing with decreasing cost per base and increasing sequencing efficiency. NGS technologies are combined with bioinformatics software to sequence genomes to be used in diagnostics, transcriptomics, epidemiologic and clinical trials in biomedical sciences. The NGS technology has also been successfully used in drug discovery for the treatment of different cancer types. Conclusion: This review focuses on current and potential applications of NGS in various stages of drug discovery process, from target identification through to personalized medicine.


Diagnostics ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 962
Author(s):  
Dario de Biase ◽  
Matteo Fassan ◽  
Umberto Malapelle

Next-Generation Sequencing (NGS) allows for the sequencing of multiple genes at a very high depth of coverage [...]


2020 ◽  
Vol 48 (12) ◽  
pp. 030006052096777
Author(s):  
Peisong Chen ◽  
Xuegao Yu ◽  
Hao Huang ◽  
Wentao Zeng ◽  
Xiaohong He ◽  
...  

Introduction To evaluate a next-generation sequencing (NGS) workflow in the screening and diagnosis of thalassemia. Methods In this prospective study, blood samples were obtained from people undergoing genetic screening for thalassemia at our centre in Guangzhou, China. Genomic DNA was polymerase chain reaction (PCR)-amplified and sequenced using the Ion Torrent system and results compared with traditional genetic analyses. Results Of the 359 subjects, 148 (41%) were confirmed to have thalassemia. Variant detection identified 35 different types including the most common. Identification of the mutational sites by NGS were consistent with those identified by Sanger sequencing and Gap-PCR. The sensitivity and specificities of the Ion Torrent NGS were 100%. In a separate test of 16 samples, results were consistent when repeated ten times. Conclusion Our NGS workflow based on the Ion Torrent sequencer was successful in the detection of large deletions and non-deletional defects in thalassemia with high accuracy and repeatability.


Sign in / Sign up

Export Citation Format

Share Document