scholarly journals Fungal Genetics and Functional Diversity of Microbial Communities in the Soil under Long-Term Monoculture of Maize Using Different Cultivation Techniques

2018 ◽  
Vol 9 ◽  
Author(s):  
Anna Gałązka ◽  
Jarosław Grządziel
2016 ◽  
Vol 42 (4) ◽  
pp. 3-11 ◽  
Author(s):  
Anna Markowicz ◽  
Grażyna Płaza ◽  
Zofia Piotrowska-Seget

Abstract The impacts of long-term polycyclic aromatic hydrocarbons (PAHs) and heavy metal pollution on soil microbial communities functioning were studied in soils taken from an old coke plant. The concentrations of PAHs in the tested soils ranged from 171 to 2137 mg kg-1. From the group of tested heavy metals, concentrations of lead were found to be the highest, ranging from 57 to 3478 mg kg-1, while zinc concentrations varied from 247 to 704 mg kg-1 and nickel from 10 to 666 mg kg-1. High dehydrogenase, acid and alkaline phosphatase activities were observed in the most contaminated soil. This may indicate bacterial adaptation to long-term heavy metal and hydrocarbon contamination. However, the Community Level Physiological Profiles (CLPPs) analysis showed that the microbial functional diversity was reduced and influenced to a higher extent by some metals (Pb, Ni), moisture and conductivity than by PAHs.


2021 ◽  
Author(s):  
Xianli Che ◽  
Min Zhang ◽  
Xuebing Zhao ◽  
Qiang Zhang ◽  
Yanyan Zhao ◽  
...  

2021 ◽  
pp. 108361
Author(s):  
Micaela Tosi ◽  
William Deen ◽  
Rhae Drijber ◽  
Morgan McPherson ◽  
Ashley Stengel ◽  
...  

2018 ◽  
Vol 95 (1) ◽  
Author(s):  
Michael McTee ◽  
Lorinda Bullington ◽  
Matthias C Rillig ◽  
Philip W Ramsey

ABSTRACTMany experiments that measure the response of microbial communities to heavy metals increase metal concentrations abruptly in the soil. However, it is unclear whether abrupt additions mimic the gradual and often long-term accumulation of these metals in the environment where microbial populations may adapt. In a greenhouse experiment that lasted 26 months, we tested whether bacterial communities and soil respiration differed between soils that received an abrupt or a gradual addition of copper or no copper at all. Bacterial richness and other diversity indices were consistently lower in the abrupt treatment compared to the ambient treatment that received no copper. The abrupt addition of copper yielded different initial bacterial communities than the gradual addition; however, these communities appeared to converge once copper concentrations were approximately equal. Soil respiration in the abrupt treatment was initially suppressed but recovered after four months. Afterwards, respiration in both the gradual and abrupt treatments wavered between being below or equal to the ambient treatment. Overall, our study indicates that gradual and abrupt additions of copper can yield similar bacterial communities and respiration, but these responses may drastically vary until copper concentrations are equal.


Sign in / Sign up

Export Citation Format

Share Document