scholarly journals iTRAQ-Based Quantitative Proteomics Analysis of HeLa Cells Infected With Chlamydia muridarum TC0668 Mutant and Wild-Type Strains

2019 ◽  
Vol 10 ◽  
Author(s):  
Yingzi Wang ◽  
Emmanuel Wirekoh Arthur ◽  
Na Liu ◽  
Xiaofang Li ◽  
Wenjing Xiang ◽  
...  
2018 ◽  
Vol 7 (1) ◽  
pp. 84-92 ◽  
Author(s):  
Murtaza Hasan ◽  
Ghazala Mustafa ◽  
Javed Iqbal ◽  
Muhammad Ashfaq ◽  
Nasir Mahmood

Here, we have investigated the comparative quantitative proteomics analysis of the molecular response of HeLa cells to biocompatible Fe2C@C nanoparticles (NPs) using 16O/18O isotopic labelling of the cell culture.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dongming Wu ◽  
Xiaopeng Wang ◽  
Ye Han ◽  
Yayun Wang

Abstract Background Recent studies have shown that lipocalin-2 (LCN2) has multiple functions involved in various biological and pathological processes including energy homeostasis, cancer, inflammation, and apoptosis. We aimed to investigate the effect of LCN2 on apoptosis that influences the pathogenetic process of metabolic diseases and cancer. Methods We performed a proteomics analysis of livers taken from LCN2-knockout mice and wild type mice by using label-free LC-MS/MS quantitative proteomics. Results Proteomic analysis revealed that there were 132 significantly differentially expressed proteins (49 upregulated and 83 downregulated) among 2140 proteins in the liver of LCN2-knockout mice compared with wild type mice. Of these, seven apoptosis-associated proteins were significantly upregulated and seven apoptosis-associated proteins downregulated. Conclusion Proteomics demonstrated that there were seven upregulated and seven downregulated apoptosis-associated proteins in liver of LCN2-knockout mice. It is important to clarify the effect of LCN2 on apoptosis that might contribute to the pathogenesis of insulin resistance, cancer, and various nervous system diseases.


2008 ◽  
Vol 7 (4) ◽  
pp. 716-727 ◽  
Author(s):  
Lisa M. Miller Jenkins ◽  
Sharlyn J. Mazur ◽  
Matteo Rossi ◽  
Olga Gaidarenko ◽  
Yang Xu ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. A564-A565
Author(s):  
L SCHWAKE ◽  
A HENKEL ◽  
H RIEDEL ◽  
B HADASCHIK ◽  
T SCHLENKER ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Maha Al-Mozaini ◽  
Ibtihag S. Alsharif ◽  
Al-Hussain J. Alzahrani ◽  
Zakia Shinwari ◽  
Magid Halim ◽  
...  

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 89-101 ◽  
Author(s):  
Qijun Xiang ◽  
N Louise Glass

AbstractA non-self-recognition system called vegetative incompatibility is ubiquitous in filamentous fungi and is genetically regulated by het loci. Different fungal individuals are unable to form viable heterokaryons if they differ in allelic specificity at a het locus. To identify components of vegetative incompatibility mediated by allelic differences at the het-c locus of Neurospora crassa, we isolated mutants that suppressed phenotypic aspects of het-c vegetative incompatibility. Three deletion mutants were identified; the deletions overlapped each other in an ORF named vib-1 (vegetative incompatibility blocked). Mutations in vib-1 fully relieved growth inhibition and repression of conidiation conferred by het-c vegetative incompatibility and significantly reduced hyphal compartmentation and death rates. The vib-1 mutants displayed a profuse conidiation pattern, suggesting that VIB-1 is a regulator of conidiation. VIB-1 shares a region of similarity to PHOG, a possible phosphate nonrepressible acid phosphatase in Aspergillus nidulans. Native gel analysis of wild-type strains and vib-1 mutants indicated that vib-1 is not the structural gene for nonrepressible acid phosphatase, but rather may regulate nonrepressible acid phosphatase activity.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


Author(s):  
Maha Al-Mozaini ◽  
Ibtihag Alsharif ◽  
Alhusain Alzahrani ◽  
Zakia Shinwari ◽  
Magid Halim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document