scholarly journals Successional Change of the Fungal Microbiome Pine Seedling Roots Inoculated With Tricholoma matsutake

2020 ◽  
Vol 11 ◽  
Author(s):  
Ki Hyeong Park ◽  
Seung-Yoon Oh ◽  
Shinnam Yoo ◽  
Myung Soo Park ◽  
Jonathan J. Fong ◽  
...  
1977 ◽  
Vol 25 (5) ◽  
pp. 483 ◽  
Author(s):  
N Malajczuk ◽  
AJ Mccomb ◽  
CA Parker

On lateritic podzolic soils in Western Australia Eucalyptus calophylla is resistant to Phytophthora cinnamomi whereas Eucalyptus marginata is susceptible and eventually killed by the pathogen. On loam soils both eucalypts are resistant. Possible mechanisms for resistance of E. calophylla in lateritic soil and the inhibitory action of loam soils were investigated. Aseptically raised eucalypt seedlings succumbed to infection in liquid culture tubes. The mechanism of infection was compared by light and electron microscopy which showed similar fungal invasion and penetration into roots of both eucalypt species. Vegetative hyphae initially penetrated intercellularly and proliferated rapidly within cortical and stelar tissue. Intracellular invasion of these tissues occurred 48hr after initial infection through dissolution of the host cell wall. Chlamydospores were formed within a number of cortical cells. Unsuberized roots of mature trees produced aseptically showed reactions to invasion similar to those of the eucalypt seedling roots. Suberized roots were not invaded. The addition of small quantities of lateritic soil to sterile sand so as to introduce soil micro-organisms without altering the chemical and physical status of the sand, and subsequent inoculation of the sand with P.cinnamomi, resulted in a reduction of root damage on both eucalypts when compared with seedlings raised in sterile sand. Roots of E.calophylla were less severely damaged than those of E.marginata. The addition of small quantities of loam soil significantly reduced root damage in seedlings of both species. These results parallel both pot experiments and field observations, and suggest that microorganisms of the rhizosphere may be an important factor in the resistance of E.calophylla to infection, and in the inhibitory effect of loam soil on P.cinnamomi.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Ye-Eun Park ◽  
Chang-Ha Park ◽  
Hyeon-Ji Yeo ◽  
Yong-Suk Chung ◽  
Sang-Un Park

Peanut (Arachis hypogaea) is a crop that can produce resveratrol, a compound with various biological properties, such as those that exert antioxidant, anticancer, and anti-inflammatory effects. In this study, trans-resveratrol was detected in the roots, leaves, and stems of tan and purple seed coat peanuts (Arachis hypogaea) cultivated in a growth chamber. Both cultivars showed higher levels of resveratrol in the roots than the other plant parts. Thus, both cultivars were inoculated with Agrobacterium rhizogenes, in vitro, to promote hairy root development, thereby producing enhanced levels of t-resveratrol. After 1 month of culture, hairy roots from the two cultivars showed higher levels of fresh weight than those of seedling roots. Furthermore, both cultivars contained higher t-resveratrol levels than those of their seedling roots (6.88 ± 0.21 mg/g and 28.07 ± 0.46 mg/g, respectively); however, purple seed coat peanut hairy roots contained higher t-resveratrol levels than those of tan seed coat peanut hairy roots, ranging from 70.16 to 166.76 mg/g and from 46.61 to 54.31 mg/g, respectively. The findings of this study indicate that peanut hairy roots could be a good source for t-resveratrol production due to their rapid growth, high biomass, and substantial amount of resveratrol.


1979 ◽  
Vol 14 (1) ◽  
pp. 79-83 ◽  
Author(s):  
L.M. Blakely ◽  
T.A. Evans
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document