scholarly journals Characterization and Diversity Analysis of the Extracellular Proteases of Thermophilic Anoxybacillus caldiproteolyticus 1A02591 From Deep-Sea Hydrothermal Vent Sediment

2021 ◽  
Vol 12 ◽  
Author(s):  
Jun-Hui Cheng ◽  
Yan Wang ◽  
Xiao-Yu Zhang ◽  
Mei-Ling Sun ◽  
Xia Zhang ◽  
...  

Protease-producing bacteria play key roles in the degradation of marine organic nitrogen. Although some deep-sea bacteria are found to produce proteases, there has been no report on protease-secreting Anoxybacillus from marine hydrothermal vent regions. Here, we analyzed the diversity and functions of the proteases, especially the extracellular proteases, of Anoxybacillus caldiproteolyticus 1A02591, a protease-secreting strain isolated from a deep-sea hydrothermal vent sediment of the East Pacific Ocean. Strain 1A02591 is a thermophilic bacterium with a strong protease-secreting ability, which displayed the maximum growth rate (0.139 h–1) and extracellular protease production (307.99 U/mL) at 55°C. Strain 1A02591 contains 75 putative proteases, including 65 intracellular proteases and 10 extracellular proteases according to signal peptide prediction. When strain 1A02591 was cultured with casein, 12 proteases were identified in the secretome, in which metalloproteases (6/12) and serine proteases (4/12) accounted for the majority, and a thermolysin-like protease of the M4 family was the most abundant, suggesting that strain 1A02591 mainly secreted a thermophilic metalloprotease. Correspondingly, the secreted proteases of strain 1A02591 showed the highest activity at the temperature as high as 70°C, and was inhibited 70% by metalloprotease inhibitor o-phenanthroline and 50% by serine protease inhibitor phenylmethylsulfonyl fluoride. The secreted proteases could degrade different proteins, suggesting the role of strain 1A02591 in organic nitrogen degradation in deep-sea hydrothermal ecosystem. These results provide the first insight into the proteases of an Anoxybacillus strain from deep-sea hydrothermal ecosystem, which is helpful in understanding the function of Anoxybacillus in the marine biogeochemical cycle.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9055
Author(s):  
Hongfei Su ◽  
Zhenlun Xiao ◽  
Kefu Yu ◽  
Qinyu Huang ◽  
Guanghua Wang ◽  
...  

Protease-producing bacteria play a vital role in degrading organic nitrogen in marine environments. However, the diversity of the bacteria and extracellular proteases has seldom been addressed, especially in communities of coral reefs. In this study, 136 extracellular protease-producing bacterial strains were isolated from seven genera of scleractinian corals from Luhuitou fringing reef, and their protease types were characterized. The massive coral had more cultivable protease-producing bacteria than branching or foliose corals. The abundance of cultivable protease-producing bacteria reached 106 CFU g−1 of coral. Phylogenetic analysis of 16S rRNA gene sequences revealed that the isolates were assigned to 24 genera, from which 20 corresponded to the phyla Firmicutes and Proteobacteria. Bacillus and Fictibacillus were retrieved from all coral samples. Moreover, Vibrio and Pseudovibrio were most prevalent in massive or foliose coral Platygyra and Montipora. In contrast, 11 genera were each identified in only one isolate. Nearly all the extracellular proteases from the bacteria were serine proteases or metalloproteases; 45.83% of isolates also released cysteine or aspartic proteases. These proteases had different hydrolytic ability against different substrates. This study represents a novel insight on the diversity of cultivable protease-producing bacteria and their extracellular proteases in scleractinian corals.


2015 ◽  
Vol 3 (6) ◽  
Author(s):  
Meixian Zhou ◽  
Yunbiao Xie ◽  
Binbin Dong ◽  
Qing Liu ◽  
Xiaoyao Chen

Here, we report the draft 2,261,881-bp genome sequence of Caloranaerobacter sp. TR13, isolated from a deep-sea hydrothermal vent on the East Pacific Rise. The sequence will be helpful for understanding the genetic and metabolic features, as well as potential biotechnological application in the genus Caloranaerobacter .


2017 ◽  
Vol 5 (17) ◽  
Author(s):  
Chen Chen ◽  
Li Sun

ABSTRACT We report here the draft genome sequence of Exiguobacterium sp. HVEsp1, a thermophilic bacterium isolated from a deep-sea hydrothermal vent. The estimated genome size of this strain is 2,838,499 bp with a G+C content of 48.2%. The genome sequence data provide valuable information that will facilitate studies on the adaptation mechanisms of bacteria living in deep-sea hydrothermal vents.


2010 ◽  
Vol 60 (12) ◽  
pp. 2729-2734 ◽  
Author(s):  
Viggó Thór Marteinsson ◽  
Snaedis H. Bjornsdottir ◽  
Nadège Bienvenu ◽  
Jakob K. Kristjansson ◽  
Jean-Louis Birrien

Nine thermophilic strains of aerobic, non-sporulating, heterotrophic bacteria were isolated after enrichment of chimney material sampled from a deep-sea hydrothermal field at a depth of 2634 m on the East-Pacific Rise (1 °N). The bacteria stained Gram-negative. They were rod-shaped and measured approximately 0.5 μm in width and 1.5–3.5 μm in length. They grew at 55–80 °C, pH 6–8 and 1–6 % NaCl. Optimal growth was observed at 70–75 °C, pH 7.0 and 1–3 % NaCl. The organisms were identified as members of the genus Rhodothermus, having a 16S rRNA gene similarity of 98.1 % with Rhodothermus marinus DSM 4252T. The novel isolates differed morphologically, physiologically and chemotaxonomically from R. marinus, e.g. in lack of pigmentation, response to hydrostatic pressure, maximum growth temperature and DNA G+C content. DNA–DNA hybridization revealed a reassociation value of 37.2 % between strain PRI 2902T and R. marinus DSM 4252T, which strongly suggested that they represent different species. Furthermore, AFLP fingerprinting separated the novel strains from R. marinus reference strains. It is therefore concluded that the strains described here should be classified as representatives of a novel species for which the name Rhodothermus profundi sp. nov. is proposed; the type strain is PRI 2902T (=DSM 22212T =JCM 15944T).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Sofiane Ghorbel ◽  
Maher Kammoun ◽  
Hala Soltana ◽  
Moncef Nasri ◽  
Noomen Hmidet

The present study describes the isolation of a new protease producingStreptomycesstrain HS1 and the biochemical characterization of the secreted proteases. By sequencing of its noted 16S rDNA, HS1 strain was found to have a 100% identity withStreptomyces flavogriseus. The highest protease production was found using FermII media. In these conditions maximum protease production (99 U/mL) was obtained after 96 h incubation at 30°C and 150 rpm. HS1 strain produced at least five proteases as revealed by zymogram technique. The enzyme preparation exhibited activity over a broad range of pH (5–11) and temperature (25–70°C). Optimum activity was observed at a pH of 7.0 and a temperature of 50°C. Proteolytic activity was significantly unaffected by Ca2+and Mg2+. EDTA and PMSF highly decreased the original activity. The crude extracellular proteases showed high stability when used as a detergent additive. These properties offer an interesting potential for enzymatic hydrolysis at the industrial level.


DNA Research ◽  
2010 ◽  
Vol 17 (3) ◽  
pp. 123-137 ◽  
Author(s):  
Y. Takaki ◽  
S. Shimamura ◽  
S. Nakagawa ◽  
Y. Fukuhara ◽  
H. Horikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document