scholarly journals Effect of Direct Viral–Bacterial Interactions on the Removal of Norovirus From Lettuce

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhangkai Xu ◽  
Zishu Liu ◽  
Jiang Chen ◽  
Songyan Zou ◽  
Yan Jin ◽  
...  

Norovirus (NoV) is the main non-bacterial pathogen causing outbreaks of gastroenteritis and is considered to be the leading cause of foodborne illness. This study aims to determine whether lettuce-encapsulated bacteria can express histo-blood group antigen (HBGA)–like substances to bind to NoV and, if so, to explore its role in protecting NoV from disinfection practices. Fifteen bacterial strains (HBGA-SEBs) were isolated from the lettuce microbiome and studied as they were proved to have the ability to express HBGA-like substances through indirect ELISA detection. By using attachment assay, HBGA-SEBs showed great abilities in carrying NoVs regarding the evaluation of binding capacity, especially for the top four strains from genera Wautersiella, Sphingobacterium, and Brachybacterium, which could absorb more than 60% of free-flowing NoVs. Meanwhile, the direct viral–bacterial binding between HBGA-like substance-expressing bacteria (HBGA-SEB) and NoVs was observed by TEM. Subsequently, results of simulated environmental experiments showed that the binding of NoVs with HBGA-SEBs did have detrimental effects on NoV reduction, which were evident in short-time high-temperature treatment (90°C) and UV exposure. Finally, by considering the relative abundance of homologous microorganisms of HBGA-SEBs in the lettuce microbiome (ca. 36.49%) and the reduction of NoVs in the simulated environments, we suggested putting extra attention on the daily disinfection of foodborne-pathogen carriers to overcome the detrimental effects of direct viral–bacterial interactions on the reduction of NoVs.

1992 ◽  
Vol 59 (4) ◽  
pp. 527-532 ◽  
Author(s):  
Geoffrey O. Regester ◽  
R. John Pearce ◽  
Victor W. K. Lee ◽  
Michael E. Mangino

SummaryCorrelations were identified between levels of the native whey proteins, β-lactoglobulin and α-lactalbumin and the surface and total hydrophobicities of cheese whey in response to different heat treatments. Heat-induced changes in the native βlactoglobulin content and surface hydrophobicity of whey exhibited the most significant linear relationship while correlations between total hydrophobicity and the native proteins were less significant because of an atypical rise in the n−heptane-binding capacity of whey after high-temperature treatment. The content of native β-lactoglobulin in whey was more sensitive to heating than the content of native α-lactalbumin, while heat-related changes in the total hydrophobicity of whey were generally greater than similar changes in surface hydrophobicity.


2008 ◽  
Vol 74 (17) ◽  
pp. 5511-5515 ◽  
Author(s):  
Henny C. van der Mei ◽  
Minie Rustema-Abbing ◽  
Joop de Vries ◽  
Henk J. Busscher

ABSTRACT Transition from reversible to irreversible bacterial adhesion is a highly relevant but poorly understood step in initial biofilm formation. We hypothesize that in oral biofilm formation, irreversible adhesion is caused by bond strengthening due to specific bacterial interactions with salivary conditioning films. Here, we compared the initial adhesion of six oral bacterial strains to salivary conditioning films with their adhesion to a bovine serum albumin (BSA) coating and related their adhesion to the strengthening of the binding forces measured with bacteria-coated atomic force microscopy cantilevers. All strains adhered in higher numbers to salivary conditioning films than to BSA coatings, and specific bacterial interactions with salivary conditioning films were accompanied by stronger initial adhesion forces. Bond strengthening occurred on a time scale of several tens of seconds and was slower for actinomyces than for streptococci. Nonspecific interactions between bacteria and BSA coatings strengthened twofold faster than their specific interactions with salivary conditioning films, likely because specific interactions require a closer approach of interacting surfaces with the removal of interfacial water and a more extensive rearrangement of surface structures. After bond strengthening, bacterial adhesion forces with a salivary conditioning film remained stronger than those with BSA coatings.


2020 ◽  
Vol 225 ◽  
pp. 106862 ◽  
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Jiawei Liu ◽  
Qian Yin ◽  
Hongwen Jing ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document