scholarly journals Different Responses of Soil Environmental Factors, Soil Bacterial Community, and Root Performance to Reductive Soil Disinfestation and Soil Fumigant Chloropicrin

2021 ◽  
Vol 12 ◽  
Author(s):  
Yu Zhan ◽  
Ning Yan ◽  
Xinyue Miao ◽  
Qiong Li ◽  
Changbao Chen

Reductive soil disinfestation (RSD) and soil fumigant chloropicrin (SFC) are two common agricultural strategies for the elimination of soil-borne pathogens. However, the differences in soil environmental factors, soil bacterial microbiome, and root performance between SFC and RSD are poorly understood. In this study, three soil treatments, untreated control (CK), SFC with 0.5 t⋅ha–1 chloropicrin, and RSD with 15 t⋅ha–1 animal feces, were compared. We evaluated their effects on soil environmental factors, bacterial community structure, and root activity using chemical analysis and high-throughput sequencing. RSD treatment improved soil composition structure, bacterial diversity, and root performance to a greater extent. Carbon source utilization preference and bacterial community structure were strikingly altered by SFC and RSD practices. Bacterial richness, diversity, and evenness were notably lowered in the SFC- and RSD-treated soil compared with the CK-treated soil. However, RSD-treated soil harbored distinct unique and core microbiomes that were composed of more abundant and diverse potentially disease-suppressive and organic-decomposable agents. Also, soil bacterial diversity and composition were closely related to soil physicochemical properties and enzyme activity, of which pH, available Na (ANa), available Mg (AMg), available Mn (AMn), total Na (TNa), total Ca (TCa), total Cu (TCu), total Sr (TSr), urease (S-UE), acid phosphatase (S-ACP), and sucrase (S-SC) were the main drivers. Moreover, RSD treatment also significantly increased ginseng root activity. Collectively, these results suggest that RSD practices could considerably restore soil nutrient structure and bacterial diversity and improve root performance, which can be applied as a potential agricultural practice for the development of disease-suppressive soil.

2021 ◽  
Author(s):  
Chengchen Pan ◽  
Qi Feng ◽  
Yulin Li ◽  
Xiaoya Yu ◽  
Shilong Ren

Abstract Bacteria constitute great abundances and groups on Earth and control many important processes in terrestrial ecosystems. However, our understanding of the interactions between soil bacteria and environmental factors remains limited, especially in sensitive and fragile ecosystems. In this study, geographic patterns of bacterial diversity across the four sandy grasslands along a 1600 km north-south transect in northern China were characterized by high-throughput 16S rRNA gene sequencing. Then, we analyzed the driving factors behind the patterns in bacterial diversity. The results showed that of the 21 phyla detected, the most abundant were Proteobacteria, Actinobacteria, Acidobacteria and Firmicutes (average relative abundance > 5%). Soil bacterial α diversity, calculated as the bacterial phylotype richness and Faith’s phylogenetic diversity, was highest in the Otingdag Sandy Land and lowest in the Mu Us Sandy Land. Soil EC was the most influential factor driving bacterial α diversity. The bacterial communities differed significantly among the four sandy grasslands, and the bacterial community structure was significantly affected by environmental factors and geographic distance. Of the environmental variables examined, climatic factors (MAT and MAP) and edaphic properties (pH and EC) explained the highest proportion of the variation in bacterial community structure. Biotic factors such as plant species richness and aboveground biomass exhibited weak but significant associations with bacterial α diversity. Our findings revealed the important role of climate and salinity factors in controlling bacterial diversity; understanding these roles is critical for predicting the impacts of climate change and promoting sustainable management strategies for ecosystem services in these sandy lands.


2021 ◽  
Vol 9 (1) ◽  
pp. 139
Author(s):  
Quanchao Zeng ◽  
Shaoshan An

High-throughput sequencing is commonly used to study soil microbial communities. However, different primers targeting different 16S rRNA hypervariable regions often generate different microbial communities and result in different values of diversity and community structure. This study determined the consequences of using two bacterial primers (338f/806r, targeting the V3-V4 region, and 520f/802r, targeting the V4 region) to assess bacterial communities in the soils of different land uses along a latitudinal gradient. The results showed that the variations in the soil bacterial diversity in different land uses were more evident based on the former pair. The statistical results showed that land use had no significant impact on soil bacterial diversity when primer pair 520f/802r was used. In contrast, when primer pair 338f/806r was used, the cropland and orchard soils had significantly higher operational taxonomic units (OTUs) and Shannon diversity index values than those of the shrubland and grassland soils. Similarly, the soil bacterial diversity generated by primer pair 338f/806r was significantly impacted by mean annual precipitation, soil total phosphorus (TP), soil total nitrogen (TN), and soil available phosphorus (AVP), while the soil bacterial diversity generated by primer pair 520f/802r showed no significant correlations with most of these environmental factors. Multiple regression models indicated that soil pH and soil organic carbon (SOC) shaped the soil bacterial community structure on the Loess Plateau regardless of what primer pair was used. Climatic conditions mainly affected the diversity of rare bacteria. Abundant bacteria are more sensitive than rare bacteria to environmental changes. Very little of the variation in the rare bacterial community was explained by environmental factors or geographic distance, suggesting that the communities of rare bacteria are unpredictable. The distributions of the abundant taxa were mainly determined by variations in environmental factors.


2016 ◽  
Vol 82 (21) ◽  
pp. 6303-6316 ◽  
Author(s):  
Erika Yashiro ◽  
Eric Pinto-Figueroa ◽  
Aline Buri ◽  
Jorge E. Spangenberg ◽  
Thierry Adatte ◽  
...  

ABSTRACTMountain ecosystems are characterized by a diverse range of climatic and topographic conditions over short distances and are known to shelter a high biodiversity. Despite important progress, still little is known on bacterial diversity in mountain areas. Here, we investigated soil bacterial biogeography at more than 100 sampling sites randomly stratified across a 700-km2area with 2,200-m elevation gradient in the western Swiss Alps. Bacterial grassland communities were highly diverse, with 12,741 total operational taxonomic units (OTUs) across 100 sites and an average of 2,918 OTUs per site. Bacterial community structure was correlated with local climatic, topographic, and soil physicochemical parameters with high statistical significance. We found pH (correlated with % CaO and % mineral carbon), hydrogen index (correlated with bulk gravimetric water content), and annual average number of frost days during the growing season to be among the groups of the most important environmental drivers of bacterial community structure. In contrast, bacterial community structure was only weakly stratified as a function of elevation. Contrasting patterns were discovered for individual bacterial taxa.Acidobacteriaresponded both positively and negatively to pH extremes. Various families within theBacteroidetesresponded to available phosphorus levels. Different verrucomicrobial groups responded to electrical conductivity, total organic carbon, water content, and mineral carbon contents. Alpine grassland bacterial communities are thus highly diverse, which is likely due to the large variety of different environmental conditions. These results shed new light on the biodiversity of mountain ecosystems, which were already identified as potentially fragile to anthropogenic influences and climate change.IMPORTANCEThis article addresses the question of how microbial communities in alpine regions are dependent on local climatic and soil physicochemical variables. We benefit from a unique 700-km2study region in the western Swiss Alps region, which has been exhaustively studied for macro-organismal and fungal ecology, and for topoclimatic modeling of future ecological trends, but without taking into account soil bacterial diversity. Here, we present an in-depth biogeographical characterization of the bacterial community diversity in this alpine region across 100 randomly stratified sites, using 56 environmental variables. Our exhaustive sampling ensured the detection of ecological trends with high statistical robustness. Our data both confirm previously observed general trends and show many new detailed trends for a wide range of bacterial taxonomic groups and environmental parameters.


2008 ◽  
Vol 2 (12) ◽  
pp. 1221-1230 ◽  
Author(s):  
Feth el Zahar Haichar ◽  
Christine Marol ◽  
Odile Berge ◽  
J Ignacio Rangel-Castro ◽  
James I Prosser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document