scholarly journals Molecular Network Analysis Reveals Transmission of HIV-1 Drug-Resistant Strains Among Newly Diagnosed HIV-1 Infections in a Moderately HIV Endemic City in China

2022 ◽  
Vol 12 ◽  
Author(s):  
Bin Zhao ◽  
Wei Song ◽  
Mingming Kang ◽  
Xue Dong ◽  
Xin Li ◽  
...  

Since the implementation of the “treat all” policy in China in 2016, there have been few data on the prevalence of transmitted drug resistance (TDR) in China. In this study, we describe TDR in patients newly diagnosed with human immunodeficiency virus (HIV) infection between 2016 and 2019 in Shenyang city, China. Demographic information and plasma samples from all newly reported HIV-infected individuals in Shenyang from 2016 to 2019 were collected. The HIV pol gene was amplified and sequenced for subtyping and TDR. The spread of TDR was analyzed by inferring an HIV molecular network based on pairwise genetic distance. In total, 2,882 sequences including CRF01_AE (2019/2,882, 70.0%), CRF07_BC (526/2,882, 18.3%), subtype B (132/2,882, 4.6%), and other subtypes (205/2,882, 7.1%) were obtained. The overall prevalence of TDR was 9.1% [95% confidence interval (CI): 8.1–10.2%]; the prevalence of TDR in each subtype in descending order was CRF07_BC [14.6% (95% CI: 11.7–18.0%)], subtype B [9.1% (95% CI: 4.8–15.3%)], CRF01_AE [7.9% (95% CI: 6.7–9.1%)], and other sequences [7.3% (95% CI: 4.2–11.8%)]. TDR mutations detected in more than 10 cases were Q58E (n = 51), M46ILV (n = 46), K103N (n = 26), E138AGKQ (n = 25), K103R/V179D (n = 20), and A98G (n = 12). Molecular network analysis revealed three CRF07_BC clusters with TDR [two with Q58E (29/29) and one with K103N (10/19)]; and five CRF01_AE clusters with TDR [two with M46L (6/6), one with A98G (4/4), one with E138A (3/3), and one with K103R/V179D (3/3)]. In the TDR clusters, 96.4% (53/55) of individuals were men who have sex with men (MSM). These results indicate that TDR is moderately prevalent in Shenyang (5–15%) and that TDR strains are mainly transmitted among MSM, providing precise targets for interventions in China.

Author(s):  
Bin Zhao ◽  
Wei Song ◽  
Minghui An ◽  
Xue Dong ◽  
Xin Li ◽  
...  

Molecular network analysis based on the genetic similarity of HIV-1 is increasingly used to guide targeted interventions. Nevertheless, there is a lack of experience regarding molecular network inferences and targeted interventions in combination with epidemiological information in areas with diverse epidemic strains of HIV-1.We collected 2,173 pol sequences covering 84% of the total newly diagnosed HIV-1 infections in Shenyang city, Northeast China, between 2016 and 2018. Molecular networks were constructed using the optimized genetic distance threshold for main subtypes obtained using sensitivity analysis of plausible threshold ranges. The transmission rates (TR) of each large cluster were assessed using Bayesian analyses. Molecular clusters with the characteristics of ≥5 newly diagnosed cases in 2018, high TR, injection drug users (IDUs), and transmitted drug resistance (TDR) were defined as priority clusters. Several HIV-1 subtypes were identified, with a predominance of CRF01_AE (71.0%, 1,542/2,173), followed by CRF07_BC (18.1%, 393/2,173), subtype B (4.5%, 97/2,173), other subtypes (2.6%, 56/2,173), and unique recombinant forms (3.9%, 85/2,173). The overall optimal genetic distance thresholds for CRF01_AE and CRF07_BC were both 0.007 subs/site. For subtype B, it was 0.013 subs/site. 861 (42.4%) sequences of the top three subtypes formed 239 clusters (size: 2-77 sequences), including eight large clusters (size ≥10 sequences). All the eight large clusters had higher TR (median TR = 52.4/100 person-years) than that of the general HIV infections in Shenyang (10.9/100 person-years). A total of ten clusters including 231 individuals were determined as priority clusters for targeted intervention, including eight large clusters (five clusters with≥5 newly diagnosed cases in 2018, one cluster with IDUs, and two clusters with TDR (K103N, Q58E/V179D), one cluster with≥5 newly diagnosed cases in 2018, and one IDUs cluster. In conclusion, a comprehensive analysis combining in-depth sampling HIV-1 molecular networks construction using subtype-specific optimal genetic distance thresholds, and baseline epidemiological information can help to identify the targets of priority intervention in an area epidemic for non-subtype B.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhen Wang ◽  
Bin Zhao ◽  
Minghui An ◽  
Wei Song ◽  
Xue Dong ◽  
...  

Abstract Background To assess transmitted drug resistance (TDR) to tenofovir (TDF)/emtricitabine (FTC), using as pre-exposure prophylaxis, among newly diagnosed human immunodeficiency virus-1 (HIV-1)-infected residents in Shenyang city, northeast China. Methods Demographic and epidemiological information of all newly diagnosed HIV-1 infected residents in Shenyang city from 2016 to 2018 were anonymously collected from the local HIV epidemic database. HIV-1 pol sequences were amplified from RNA in cryopreserved plasma samples and sequenced directly. Viral subtypes were inferred with phylogenetic analysis and drug resistance mutations (DRMs) were determined according to the Stanford HIVdb algorithm. Recent HIV infection was determined with HIV Limiting Antigen avidity electro immunoassay. Results A total of 2176 sequences (92.4%, 2176/2354) were obtained; 70.9% (1536/2167) were CRF01_AE, followed by CRF07_BC (18.0%, 391/2167), subtype B (4.7%, 102/2167), other subtypes (2.6%, 56/2167), and unique recombinant forms (3.8%, 82/2167). The prevalence of TDR was 4.9% (107/2167), among which, only 0.6% (13/2167) was resistance to TDF/FTC. Most of these subjects had CRF01_AE strains (76.9%, 10/13), were unmarried (76.9%, 10/13), infected through homosexual contact (92.3%, 12/13), and over 30 years old (median age: 33). The TDF/FTC DRMs included K65R (8/13), M184I/V (5/13), and Y115F (2/13). Recent HIV infection accounted for only 23.1% (3/13). Most cases were sporadic in the phylogenetic tree, except two CRF01_AE sequences with K65R (Bootstrap value: 99%). Conclusions The prevalence of TDR to TDF/FTC is low among newly diagnosed HIV-infected cases in Shenyang, suggesting that TDR may have little impact on the protective effect of the ongoing CROPrEP project in Shenyang city.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yibo Ding ◽  
Min Chen ◽  
Jibao Wang ◽  
Yuecheng Yang ◽  
Yi Feng ◽  
...  

Abstract Background HIV-transmitted drug resistance (TDR) is found in antiretroviral therapy (ART)-naïve populations infected with HIV-1 with TDR mutations and is important for guiding future first- and second-line ART regimens. We investigated TDR and its effect on CD4 count in ART-naïve youths from the China-Myanmar border near the Golden Triangle to better understand TDR and effectively guide ART. Methods From 2009 to 2017, 10,832 HIV-1 infected individuals were newly reported along the Dehong border of China, 573 ART-naïve youths (16 ~ 25 y) were enrolled. CD4 counts were obtained from whole blood samples. HIV pol gene sequences were amplified from RNA extracted from plasma. The Stanford REGA program and jpHMM recombination prediction tool were used to determine genotypes. TDR mutations (TDRMs) were analyzed using the Stanford Calibrated Population Resistance tool. Results The most common infection route was heterosexuals (70.51%), followed by people who inject drugs (PWID, 19.20%) and men who have sex with men (MSM) (8.90%). The distribution of HIV genotypes mainly included the unique recombinant form (URF) (44.08%), 38.68% were CRFs, 13.24% were subtype C and 4.04% were subtype B. The prevalence of TDR increased significantly from 2009 to 2017 (3.48 to 9.48%) in ART-naïve youths (4.00 to 13.16% in Burmese subjects, 3.33 to 5.93% in Chinese subjects), and the resistance to non-nucleoside reverse transcriptase inhibitors (NNRTIs), nucleoside and nucleotide reverse transcriptase inhibitors (NRTIs), and protease inhibitors (PIs) were 3.49, 2.62, and 0.52%, respectively. Most (94.40%, n = 34) of HIV-1-infected patients with TDRM had mutation that conferred resistance to a single drug class. The most common mutations Y181I/C and K103N, were found in 7 and 9 youths, respectively. The mean CD4 count was significantly lower among individuals with TDRMs (373/mm3 vs. 496/mm3, p = 0.013). Conclusions The increase in the prevalence of HIV-1 TDR increase and a low CD4 count of patients with TDRMs in the China-Myanmar border suggests the need for considering drug resistance before initiating ART in HIV recombination hotspots.


2017 ◽  
Vol 22 (2) ◽  
Author(s):  
Andrea Hauser ◽  
Alexandra Hofmann ◽  
Kirsten Hanke ◽  
Viviane Bremer ◽  
Barbara Bartmeyer ◽  
...  

To enable an up-to-date molecular analysis of human immunodeficiency virus (HIV) genotypes circulating in Germany we have established a surveillance system based on recently acquired HIV infections. New HIV infections are reported to the Robert Koch Institute as a statutory duty for anonymous notification. In 2013 and 2014, a dried serum spot (DSS) sample was received from 6,371 newly diagnosed HIV-cases; their analysis suggested that 1,797 samples originated from a recent infection. Of these, 809 were successfully genotyped in the pol region to identify transmitted drug resistance (TDR) mutations and to determine the HIV-1 subtype. Total TDR was 10.8%, comprising 4.3% with mono-resistance to nucleoside reverse transcriptase inhibitors (NRTIs), 2.6% to non-NRTIs, 3.0% to protease inhibitors and 0.6% and 0.2%, respectively, with dual- and triple-class resistances. HIV-1 subtype B was most prevalent with 77.0%. Non-B infections were identified more often in men and women with heterosexual transmission compared with intravenous drug users or men who have sex with men (79% and 76%, 33%, 12%; all p < 0.05). Non-B subtypes were also more frequently found in patients originating from countries other than Germany (46% vs 14%; p < 0.05) and in patients infected outside of Germany (63% vs 14%; p < 0.05).


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
J Fonager ◽  
T K Fischer

Abstract Transmission of HIV-1 resistance mutations among therapy-naïve patients impairs the efficiency of antiretroviral therapy (ART). Therefore, genotypic resistance testing of patients is recommended at baseline, as this both allows for the selection of the correct ART regimen and for surveillance of transmitted drug resistance mutations (TDRM) among therapy naive HIV-1 patients. In Denmark, the occurrence of TDRM in newly diagnosed and therapy naïve HIV-1 patients is monitored through the SERO project. Here, we investigated if the prevalence of TDRM differed between patients within and outside of phylogenetically identified transmission clusters. Samples from 1,227 newly diagnosed HIV-1 patients were sent along with epidemiological information to the Virological Surveillance and Research group at Statens Serum Institut. HIV-1 RNA extraction, RT-PCR and Sanger sequencing of the pol gene was performed using an in-house assay. The sequences were analyzed using BioNumerics v. 6.6 and manually checked for the presence of mixed mutations and analyzed for mutations using the HIVDB 8.4 algorithm implemented at the Stanford database. Sequence alignments were performed in Mafft, and phylogenetic analysis was performed using Mega 6.0 using the Maximum likelihood general time reversible model with 100 bootstrap replicates. Clusters were identified with ClusterPicker at default settings (cluster support = 90%, genetic distance 4.5%). Active clusters contained newly diagnosed patients from the 2015 to 2017 period. HIV-1 sequences from 588 patients belonged to one of 154 clusters, and sequences from 639 patients did not belong to a cluster. Patients in clusters were significantly more likely to be men who have sex with men and subtype B and significantly less likely to be late presenters (Fisher’s test P < 0.05). The TDRM prevalence was significantly higher for patients outside of clusters than within clusters, 16.6 per cent versus 12.1 per cent, respectively (Fisher’s test P < 0.05); however, no significant differences were found in the TDRM prevalence between the 75 active and 79 inactive clusters, nor between small (<3 patients) and large (≥3 patients) clusters. E138A, V179D, and K103N were the three most prevalent TDRMs for both patient groups, whereas M41L differed between them. In Denmark, the TDRM prevalence is lower within clusters than outside, indicating that TDRM cases are either imported and/or belong to yet unidentified clusters.


2020 ◽  
Vol 2 ◽  
Author(s):  
Teiichiro Shiino ◽  
Atsuko Hachiya ◽  
Junko Hattori ◽  
Wataru Sugiura ◽  
Kazuhisa Yoshimura

Background: To better understand the epidemiology of human immunodeficiency virus type 1 (HIV-1) subtype B transmission in Japan, phylodynamic analysis of viral pol sequences was conducted on individuals newly diagnosed as HIV-1 seropositive.Methodology: A total of 5,018 patients newly diagnosed with HIV-1 infection and registered in the Japanese Drug Resistance HIV Surveillance Network from 2003 to 2012 were enrolled in the analysis. Using the protease-reverse transcriptase nucleotide sequences, their subtypes were determined, and phylogenetic relationships among subtype B sequences were inferred using three different methods: distance-matrix, maximum likelihood, and Bayesian Markov chain Monte Carlo. Domestically spread transmission clusters (dTCs) were identified based on the following criteria: &gt;95% in interior branch test, &gt;95% in Bayesian posterior probability and &lt;10% in depth-first searches for sub-tree partitions. The association between dTC affiliation and individuals' demographics was analyzed using univariate and multivariate analyses.Results: Among the cases enrolled in the analysis, 4,398 (87.6%) were classified as subtype B. Many of them were Japanese men who had sex with men (MSM), and 3,708 (84.3%) belonged to any of 312 dTCs. Among these dTCs, 243 (77.9%) were small clusters with &lt;10 individuals, and the largest cluster consisted of 256 individuals. Most dTCs had median time of the most recent common ancestor between 1995 and 2005, suggesting that subtype B infection was spread among MSMs in the second half of the 1990s. Interestingly, many dTCs occurred within geographical regions. Comparing with singleton cases, TCs included more MSM, young person, and individuals with high CD4+ T-cell count at the first consultation. Furthermore, dTC size was significantly correlated with gender, age, transmission risks, recent diagnosis and relative population size of the region mainly distributed.Conclusions: Our study clarified that major key population of HIV-1 subtype B epidemic in Japan is local MSM groups. The study suggests that HIV-1 subtype B spread via episodic introductions into the local MSM groups, some of the viruses spread to multiple regions. Many cases in dTC were diagnosed during the early phase of infection, suggesting their awareness to HIV risks.


2020 ◽  
Vol 92 (12) ◽  
pp. 3209-3218
Author(s):  
Xin Guan ◽  
Min Han ◽  
Zhiju Li ◽  
Lihua Wang ◽  
Donghe Zhang ◽  
...  

2021 ◽  
Vol 19 ◽  
Author(s):  
Rabia Can Sarinoglu ◽  
Uluhan Sili ◽  
Ufuk Hasdemir ◽  
Burak Aksu ◽  
Guner Soyletir ◽  
...  

Background: The World Health Organization (WHO) recommends the surveillance of transmitted drug resistance mutations (TDRMs) to ensure the effectiveness and sustainability of HIV treatment programs. Objective: Our aim was to determine the TDRMs and evaluate the distribution of HIV-1 subtypes using and compared next-generation sequencing (NGS) and Sanger-based sequencing (SBS) in a cohort of 44 antiretroviral treatment-naïve patients. Methods: All samples that were referred to the microbiology laboratory for HIV drug resistance analysis between December 2016 and February 2018 were included in the study. After exclusions, 44 treatment-naive adult patients with a viral load of >1000 copies/mL were analyzed. DNA sequencing for reverse transcriptase and protease regions was performed using both DeepChek ABL single round kit and Sanger-based ViroSeq HIV-1 Genotyping System. The mutations and HIV-1 subtypes were analyzed using the Stanford HIVdb version 8.6.1 Genotypic Resistance software, and TDRMs were assessed using the WHO surveillance drug-resistance mutation database. HIV-1 subtypes were confirmed by constructing a maximum-likelihood phylogenetic tree using Los Alamos IQ-Tree software. Results: NGS identified nucleos(t)ide reverse transcriptase inhibitor (NRTI)-TDRMs in 9.1% of the patients, non-nucleos(t)ide reverse transcriptase inhibitor (NNRTI)-TDRMs in 6.8% of the patients, and protease inhibitor (PI)-TDRMs in 18.2% of the patients at a detection threshold of ≥1%. Using SBS, 2.3% and 6.8% of the patients were found to have NRTI- and NNRTI-TDRMs, respectively, but no major PI mutations were detected. M41L, L74I, K65R, M184V, and M184I related to NRTI, K103N to NNRTI, and N83D, M46I, I84V, V82A, L24I, L90M, I54V to the PI sites were identified using NGS. Most mutations were found in low-abundance (frequency range: 1.0% - 4.7%) HIV-1 variants, except M41L and K103N. The subtypes of the isolates were found as follows; 61.4% subtype B, 18.2% subtype B/CRF02_AG recombinant, 13.6% subtype A, 4.5% CRF43_02G, and 2.3% CRF02_AG. All TDRMs, except K65R, were detected in HIV-1 subtype B isolates.. Conclusion: The high diversity of protease site TDRMs in the minority HIV-1 variants and prevalence of CRFs were remarkable in this study. All minority HIV-1 variants were missed by conventional sequencing. TDRM prevalence among minority variants appears to be decreasing over time at our center.


2020 ◽  
Author(s):  
Billal Musah Obeng ◽  
Evelyn Yayra Bonney ◽  
Lucy Asamoah-Akuoko ◽  
Nicholas Israel Nii-Trebi ◽  
Gifty Mawuli ◽  
...  

Abstract Background: Detection of HIV-1 transmitted drug resistance (TDR) and subtype diversity (SD) are public health strategies to assess current HIV-1 regimen and ensure effective therapeutic outcomes of ART among HIV-1 patients. Globally, limited data exist on TDR and SD among blood donors. In this study, drug resistance mutations and subtype diversity among HIV-1 sero-positive blood donors in Accra, Ghana was characterized.Methods: Purposive sampling method was used to collect 81 HIV sero-positive blood samples from the Southern Area Blood Center and confirmed by serology as HIV-1 and/or HIV-2. Viral RNA was only extracted from plasma samples confirmed as HIV-1 positive. Complementary DNA (cDNA) was synthesized using the RNA as a template and subsequently amplified by nested PCR with specific primers. The expected products were verified, purified and sequenced. Neighbor-joining tree with the Kimura’s 2-parameter distances was generated with the RT sequences using Molecular Evolutionary Genetic Analysis version 6.0 (MEGA 6.0).Results: Out of the 81 plasma samples, 60 (74%) were confirmed as HIV-1 sero-positive by INNO-LIA HIVI/II Score kit with no HIV-2 and dual HIV-1/2 infections. The remaining samples, 21 (26%) were confirmed as HIV sero-negative. Of the 60 confirmed positive samples, (32) 53% and (28) 50% were successfully amplified in the RT and PR genes respectively. Nucleotide sequencing of amplified samples revealed the presence of major drug resistance mutations in two (2) samples; E138A in one sample and another with K65R. HIV-1 Subtypes including subtypes A, B, CRF02_AG and CRF09_cpx were found. Conclusion: This study found major drug resistance mutations, E138A and K65R in the RT gene that confer high level resistance to most NNRTIs and NRTI respectively. CRF02_AG was most predominant, the recorded percentage of subtype B and the evolutionary relationship inferred by phylogenetic analysis suggest possible subtype importation. The data obtained would inform the selection of drugs for ART initiation to maximize therapeutic options in drug-naïve HIV-1 patients in Ghana.


Sign in / Sign up

Export Citation Format

Share Document