scholarly journals An Emerging Role for Post-translational Modifications in Regulating RNP Condensates in the Germ Line

2021 ◽  
Vol 8 ◽  
Author(s):  
Jennifer A. Schisa ◽  
Mohamed T. Elaswad

RNA-binding proteins undergo regulated phase transitions in an array of cell types. The phase separation of RNA-binding proteins, and subsequent formation of RNP condensates or granules, occurs during physiological conditions and can also be induced by stress. Some RNP granules have roles in post-transcriptionally regulating mRNAs, and mutations that prevent the condensation of RNA-binding proteins can reduce an organism’s fitness. The reversible and multivalent interactions among RNP granule components can result in RNP complexes that transition among diffuse and condensed states, the latter of which can be pathological; for example, in neurons solid RNP aggregates contribute to disease states such as amyotrophic lateral sclerosis (ALS), and the dysregulation of RNP granules in human germ cells may be involved in Fragile X-associated primary ovarian insufficiency. Thus, regulating the assembly of mRNAs and RNA-binding proteins into discrete granules appears to provide important functions at both cellular and physiological levels. Here we review our current understanding of the role of post-translational modifications (PTMs) in regulating the condensation of RNA-binding proteins in the germ line. We compare and contrast the in vitro evidence that methylation inhibits phase separation of RNA binding proteins, with the extent to which these results apply to the in vivo germ line environment of several model systems. We also focus on the role of phosphorylation in modulating the dynamics of RNP granules in the germ line. Finally, we consider the gaps that exist in our understanding of the role of PTMs in regulating germ line RNP granules.

2018 ◽  
Author(s):  
Yongjia Duan ◽  
Aiying Du ◽  
Jinge Gu ◽  
Gang Duan ◽  
Chen Wang ◽  
...  

SUMMARYMutations in RNA-binding proteins localized in ribonucleoprotein (RNP) granules, such as hnRNP A1 and TDP-43, promote aberrant protein aggregations, which are pathological hallmarks in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Protein posttranslational modifications (PTMs) are known to regulate RNP granules. In this study, we investigate the function of PARylation, an important PTM involved in DNA damage repair and cell death, in RNP-related neurodegeneration. We reveal that PARylation levels are a major regulator of the dynamic assembly-disassembly of RNP granules, and the disease-related RNPs such as hnRNP A1 and TDP-43 can both be PARylated and bind to PARylated proteins. We further identify the PARylation site of hnRNP A1 at K298, which controls the cytoplasmic translocation of hnRNP A1 in response to stress, as well as the PAR-binding motif (PBM) of hnRNP A1, which is required for the delivery and association of hnRNP A1 to stress granules. Moreover, we show that PAR not only dramatically enhances the liquid-liquid phase separation of hnRNP A1, but also promotes the co-phase separation of hnRNP A1 and TDP-43 in vitro and their interaction in vivo. Finally, we establish that both genetic and pharmacological inhibition of PARP mitigates hnRNP A1 and TDP-43-mediated neurotoxicity in cell and Drosophila models of ALS. Together, our findings indicate a novel and crucial role of PARylation in regulating the assembly and the dynamics of RNP granules, and dysregulation of PARylation may contribute to ALS disease pathogenesis.


2013 ◽  
Vol 9 ◽  
pp. P847-P847
Author(s):  
Benjamin Wolozin ◽  
Tara Vanderweyde ◽  
Liqun Liu-Yesucevitz ◽  
Alpaslan Dedeoglu ◽  
Leonard Petrucelli ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Benjamin L. Zaepfel ◽  
Jeffrey D. Rothstein

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that affects upper and lower motor neurons. Familial ALS accounts for a small subset of cases (<10–15%) and is caused by dominant mutations in one of more than 10 known genes. Multiple genes have been causally or pathologically linked to both ALS and frontotemporal dementia (FTD). Many of these genes encode RNA-binding proteins, so the role of dysregulated RNA metabolism in neurodegeneration is being actively investigated. In addition to defects in RNA metabolism, recent studies provide emerging evidence into how RNA itself can contribute to the degeneration of both motor and cortical neurons. In this review, we discuss the roles of altered RNA metabolism and RNA-mediated toxicity in the context of TARDBP, FUS, and C9ORF72 mutations. Specifically, we focus on recent studies that describe toxic RNA as the potential initiator of disease, disease-associated defects in specific RNA metabolism pathways, as well as how RNA-based approaches can be used as potential therapies. Altogether, we highlight the importance of RNA-based investigations into the molecular progression of ALS, as well as the need for RNA-dependent structural studies of disease-linked RNA-binding proteins to identify clear therapeutic targets.


Author(s):  
Bhawana Maurya ◽  
Satya Surabhi ◽  
Pranjali Pandey ◽  
Ashim Mukherjee ◽  
Mousumi Mutsuddi

2013 ◽  
Vol 394 (8) ◽  
pp. 1077-1090 ◽  
Author(s):  
Kristin Wächter ◽  
Marcel Köhn ◽  
Nadine Stöhr ◽  
Stefan Hüttelmaier

Abstract The IGF2 mRNA-binding protein family (IGF2BPs) directs the cytoplasmic fate of various target mRNAs and controls essential cellular functions. The three IGF2BP paralogues expressed in mammals comprise two RNA-recognition motifs (RRM) as well as four KH domains. How these domains direct IGF2BP paralogue-dependent protein function remains largely elusive. In this study, we analyze the role of KH domains in IGF2BPs by the mutational GXXG-GEEG conversion of single KH domain loops in the context of full-length polypeptides. These analyses reveal that all four KH domains of IGF2BP1 and IGF2BP2 are essentially involved in RNA-binding in vitro and the cellular association with RNA-binding proteins (RBPs). Moreover the KH domains prevent the nuclear accumulation of these two paralogues and facilitate their recruitment to stress granules. The role of KH domains appears less pronounced in IGF2BP3, because GxxG-GEEG conversion in all four KH domains only modestly affects RNA-binding, subcellular localization and RNA-dependent protein association of this paralogue. These findings indicate paralogue-dependent RNA-binding properties of IGF2BPs which likely direct distinct cellular functions. Our findings suggest that IGF2BPs contact target RNAs via all four KH domains. This implies significant structural constraints, which presumably allow the formation of exceedingly stable protein-RNA complexes.


Sign in / Sign up

Export Citation Format

Share Document