scholarly journals PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins

2018 ◽  
Author(s):  
Yongjia Duan ◽  
Aiying Du ◽  
Jinge Gu ◽  
Gang Duan ◽  
Chen Wang ◽  
...  

SUMMARYMutations in RNA-binding proteins localized in ribonucleoprotein (RNP) granules, such as hnRNP A1 and TDP-43, promote aberrant protein aggregations, which are pathological hallmarks in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Protein posttranslational modifications (PTMs) are known to regulate RNP granules. In this study, we investigate the function of PARylation, an important PTM involved in DNA damage repair and cell death, in RNP-related neurodegeneration. We reveal that PARylation levels are a major regulator of the dynamic assembly-disassembly of RNP granules, and the disease-related RNPs such as hnRNP A1 and TDP-43 can both be PARylated and bind to PARylated proteins. We further identify the PARylation site of hnRNP A1 at K298, which controls the cytoplasmic translocation of hnRNP A1 in response to stress, as well as the PAR-binding motif (PBM) of hnRNP A1, which is required for the delivery and association of hnRNP A1 to stress granules. Moreover, we show that PAR not only dramatically enhances the liquid-liquid phase separation of hnRNP A1, but also promotes the co-phase separation of hnRNP A1 and TDP-43 in vitro and their interaction in vivo. Finally, we establish that both genetic and pharmacological inhibition of PARP mitigates hnRNP A1 and TDP-43-mediated neurotoxicity in cell and Drosophila models of ALS. Together, our findings indicate a novel and crucial role of PARylation in regulating the assembly and the dynamics of RNP granules, and dysregulation of PARylation may contribute to ALS disease pathogenesis.

1995 ◽  
Vol 15 (5) ◽  
pp. 2800-2808 ◽  
Author(s):  
Q Liu ◽  
G Dreyfuss

Heterogenous nuclear ribonucleoproteins (hnRNPs) bind pre-mRNAs and facilitate their processing into mRNAs. Many of the hnRNPs undergo extensive posttranslational modifications including methylation on arginine residues. hnRNPs contain about 65% of the total NG,NG-dimethylarginine found in the cell nucleus. The role of this modification is not known. Here we identify the hnRNPs that are methylated in HeLa cells and demonstrate that most of the pre-mRNA-binding proteins receive this modification. Using recombinant human hnRNP A1 as a substrate, we have partially purified and characterized a protein-arginine N-methyltransferase specific for hnRNPs from HeLa cells. This methyltransferase can methylate the same subset of hnRNPs in vitro as are methylated in vivo. Furthermore, it can also methylate other RNA-binding proteins that contain the RGG motif RNA-binding domain. This activity is evolutionarily conserved from lower eukaryotes to mammals, suggesting that methylation has a significant role in the function of RNA-binding proteins.


2021 ◽  
Author(s):  
Simon H. Stitzinger ◽  
Salma Sohrabi-Jahromi ◽  
Johannes Söding

AbstractNumerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs. Yet most RNA binding domains display low specificity and affinity, to the extent that for most RNA-binding domains, the enrichment of the best binding motif measured by high-throughput RNA SELEX or RNA bind-n-seq is usually below 10-fold, dramatically lower than that of DNA-binding domains. Here, we develop a thermodynamic model to predict the binding affinity for proteins with any number of RNA-binding domains given the affinities of their isolated domains. For the four proteins in which affinities for individual domains have been measured the model predictions are in good agreement with experimental values. The model gives insight into how proteins with multiple RNA-binding domains can reach affinities and specificities orders of magnitude higher than their individual domains. Our results contribute towards resolving the conundrum of missing specificity and affinity of RNA binding proteins and underscore the need for bioinformatic methods that can learn models for multi-domain RNA binding proteins from high-throughput in-vitro and in-vivo experiments.


Oncogene ◽  
2021 ◽  
Author(s):  
Qiuxia Yan ◽  
Peng Zeng ◽  
Xiuqin Zhou ◽  
Xiaoying Zhao ◽  
Runqiang Chen ◽  
...  

AbstractThe prognosis for patients with metastatic bladder cancer (BCa) is poor, and it is not improved by current treatments. RNA-binding motif protein X-linked (RBMX) are involved in the regulation of the malignant progression of various tumors. However, the role of RBMX in BCa tumorigenicity and progression remains unclear. In this study, we found that RBMX was significantly downregulated in BCa tissues, especially in muscle-invasive BCa tissues. RBMX expression was negatively correlated with tumor stage, histological grade and poor patient prognosis. Functional assays demonstrated that RBMX inhibited BCa cell proliferation, colony formation, migration, and invasion in vitro and suppressed tumor growth and metastasis in vivo. Mechanistic investigations revealed that hnRNP A1 was an RBMX-binding protein. RBMX competitively inhibited the combination of the RGG motif in hnRNP A1 and the sequences flanking PKM exon 9, leading to the formation of lower PKM2 and higher PKM1 levels, which attenuated the tumorigenicity and progression of BCa. Moreover, RBMX inhibited aerobic glycolysis through hnRNP A1-dependent PKM alternative splicing and counteracted the PKM2 overexpression-induced aggressive phenotype of the BCa cells. In conclusion, our findings indicate that RBMX suppresses BCa tumorigenicity and progression via an hnRNP A1-mediated PKM alternative splicing mechanism. RBMX may serve as a novel prognostic biomarker for clinical intervention in BCa.


2003 ◽  
Vol 23 (19) ◽  
pp. 7055-7067 ◽  
Author(s):  
Shelly A. Waggoner ◽  
Stephen A. Liebhaber

ABSTRACT Posttranscriptional controls in higher eukaryotes are central to cell differentiation and developmental programs. These controls reflect sequence-specific interactions of mRNAs with one or more RNA binding proteins. The α-globin poly(C) binding proteins (αCPs) comprise a highly abundant subset of K homology (KH) domain RNA binding proteins and have a characteristic preference for binding single-stranded C-rich motifs. αCPs have been implicated in translation control and stabilization of multiple cellular and viral mRNAs. To explore the full contribution of αCPs to cell function, we have identified a set of mRNAs that associate in vivo with the major αCP2 isoforms. One hundred sixty mRNA species were consistently identified in three independent analyses of αCP2-RNP complexes immunopurified from a human hematopoietic cell line (K562). These mRNAs could be grouped into subsets encoding cytoskeletal components, transcription factors, proto-oncogenes, and cell signaling factors. Two mRNAs were linked to ceroid lipofuscinosis, indicating a potential role for αCP2 in this infantile neurodegenerative disease. Surprisingly, αCP2 mRNA itself was represented in αCP2-RNP complexes, suggesting autoregulatory control of αCP2 expression. In vitro analyses of representative target mRNAs confirmed direct binding of αCP2 within their 3′ untranslated regions. These data expand the list of mRNAs that associate with αCP2 in vivo and establish a foundation for modeling its role in coordinating pathways of posttranscriptional gene regulation.


2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


1996 ◽  
Vol 16 (7) ◽  
pp. 3668-3678 ◽  
Author(s):  
M F Henry ◽  
P A Silver

RNA-binding proteins play many essential roles in the metabolism of nuclear pre-mRNA. As such, they demonstrate a myriad of dynamic behaviors and modifications. In particular, heterogeneous nuclear ribonucleoproteins (hnRNPs) contain the bulk of methylated arginine residues in eukaryotic cells. We have identified the first eukaryotic hnRNP-specific methyltransferase via a genetic screen for proteins that interact with an abundant poly(A)+-RNA-binding protein termed Npl3p. We have previously shown that npl3-1 mutants are temperature sensitive for growth and defective for export of mRNA from the nucleus. New mutants in interacting genes were isolated by their failure to survive in the presence of the npl3-1 allele. Four alleles of the same gene were identified in this manner. Cloning of the cognate gene revealed an encoded protein with similarity to methyltransferases that was termed HMT1 for hnRNP methyltransferase. HMT1 is not required for normal cell viability except when NPL3 is also defective. The Hmt1 protein is located in the nucleus. We demonstrate that Npl3p is methylated by Hmt1p both in vivo and in vitro. These findings now allow further exploration of the function of this previously uncharacterized class of enzymes.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 872 ◽  
Author(s):  
Clemens Grimm ◽  
Jann-Patrick Pelz ◽  
Cornelius Schneider ◽  
Katrin Schäffler ◽  
Utz Fischer

Eukaryotic cells determine the protein output of their genetic program by regulating mRNA transcription, localization, translation and turnover rates. This regulation is accomplished by an ensemble of RNA-binding proteins (RBPs) that bind to any given mRNA, thus forming mRNPs. Poly(A) binding proteins (PABPs) are prominent members of virtually all mRNPs that possess poly(A) tails. They serve as multifunctional scaffolds, allowing the recruitment of diverse factors containing a poly(A)-interacting motif (PAM) into mRNPs. We present the crystal structure of the variant PAM motif (termed PAM2w) in the N-terminal part of the positive translation factor LARP4B, which binds to the MLLE domain of the poly(A) binding protein C1 cytoplasmic 1 (PABPC1). The structural analysis, along with mutational studies in vitro and in vivo, uncovered a new mode of interaction between PAM2 motifs and MLLE domains.


2012 ◽  
Vol 302 (10) ◽  
pp. E1269-E1282 ◽  
Author(s):  
Ruijin Shao ◽  
Xiaoqin Wang ◽  
Birgitta Weijdegård ◽  
Anders Norström ◽  
Julia Fernandez-Rodriguez ◽  
...  

Heterogeneous nuclear ribonucleoproteins (hnRNPs), which are chromatin-associated RNA-binding proteins, participate in mRNA stability, transport, intracellular localization, and translation by acting as transacting factors. Several studies have shown that steroid hormones can regulate hnRNP expression. However, to date, the regulation of hnRNPs and their interactions with steroid hormone signaling in fallopian tubes and endometrium are not fully elucidated. In the present study, we determined whether hnRNP expression is regulated during the menstrual cycle and correlates with estrogen receptor (ER) and progesterone receptor (PR) levels in human fallopian tubes in vivo. Because of the limited availability of human tubal tissues for the research, we also explored the mechanisms of hnRNP regulation in human endometrium in vitro. Fallopian tissue was obtained from patients in the early, late, and postovulatory phases and the midsecretory phase and endometrial tissue from premenopausal and postmenopausal women undergoing hysterectomy. We measured expression of hnRNPs and assessed their intracellular localization and interactions with ERs and PRs. We also determined the effects of human chorionic gonadotropin, 17β-estradiol (E2), and progesterone (P4) on hnRNP expression. In fallopian tubes, mRNA and protein levels of hnRNP A1, AB, D, G, H, and U changed dynamically during ovulation and in the midsecretory phase. In coimmunolocation and coimmunoprecipitation experiments, hnRNPs interacted with each other and with ERs and PRs in fallopian tubes. After treatment with E2 and/or P4 to activate ERs and PRs, hnRNP A1, AB, D, G, and U proteins displayed overlapping but distinct patterns of regulation in the endometrium in vitro. Our findings expand the physiological repertoire of hnRNPs in human fallopian tubes and endometrium and suggest that steroid hormones regulate different hnRNPs directly by interacting with ERs and/or PRs or indirectly by binding other hnRNPs. Both actions may contribute to regulation of gene transcription.


1997 ◽  
Vol 17 (11) ◽  
pp. 6402-6409 ◽  
Author(s):  
L Wu ◽  
P J Good ◽  
J D Richter

The translational activation of several maternal mRNAs in Xenopus laevis is dependent on cytoplasmic poly(A) elongation. Messages harboring the UUUUUAU-type cytoplasmic polyadenylation element (CPE) in their 3' untranslated regions (UTRs) undergo polyadenylation and translation during oocyte maturation. This CPE is bound by the protein CPEB, which is essential for polyadenylation. mRNAs that have the poly(U)12-27 embryonic-type CPE (eCPE) in their 3' UTRs undergo polyadenylation and translation during the early cleavage and blastula stages. A 36-kDa eCPE-binding protein in oocytes and embryos has been identified by UV cross-linking. We now report that this 36-kDa protein is ElrA, a member of the ELAV family of RNA-binding proteins. The proteins are identical in size, antibody directed against ElrA immunoprecipitates the 36-kDa protein, and the two proteins have the same RNA binding specificity in vitro. C12 and activin receptor mRNAs, both of which contain eCPEs, are detected in immunoprecipitated ElrA-mRNP complexes from eggs and embryos. In addition, this in vivo interaction requires the eCPE. Although a number of experiments failed to define a role for ElrA in cytoplasmic polyadenylation, the expression of a dominant negative ElrA protein in embryos results in an exogastrulation phenotype. The possible functions of ElrA in gastrulation are discussed.


1995 ◽  
Vol 129 (3) ◽  
pp. 551-560 ◽  
Author(s):  
H Siomi ◽  
G Dreyfuss

The heterogeneous nuclear RNP (hnRNP) A1 protein is one of the major pre-mRNA/mRNA binding proteins in eukaryotic cells and one of the most abundant proteins in the nucleus. It is localized to the nucleoplasm and it also shuttles between the nucleus and the cytoplasm. The amino acid sequence of A1 contains two RNP motif RNA-binding domains (RBDs) at the amino terminus and a glycine-rich domain at the carboxyl terminus. This configuration, designated 2x RBD-Gly, is representative of perhaps the largest family of hnRNP proteins. Unlike most nuclear proteins characterized so far, A1 (and most 2x RBD-Gly proteins) does not contain a recognizable nuclear localization signal (NLS). We have found that a segment of ca. 40 amino acids near the carboxyl end of the protein (designated M9) is necessary and sufficient for nuclear localization; attaching this segment to the bacterial protein beta-galactosidase or to pyruvate kinase completely localized these otherwise cytoplasmic proteins to the nucleus. The RBDs and another RNA binding motif found in the glycine-rich domain, the RGG box, are not required for A1 nuclear localization. M9 is a novel type of nuclear localization domain as it does not contain sequences similar to classical basic-type NLS. Interestingly, sequences similar to M9 are found in other nuclear RNA-binding proteins including hnRNP A2.


Sign in / Sign up

Export Citation Format

Share Document