scholarly journals RNA Polymerase III Subunit Mutations in Genetic Diseases

2021 ◽  
Vol 8 ◽  
Author(s):  
Elisabeth Lata ◽  
Karine Choquet ◽  
Francis Sagliocco ◽  
Bernard Brais ◽  
Geneviève Bernard ◽  
...  

RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.

1998 ◽  
Vol 95 (16) ◽  
pp. 9196-9201 ◽  
Author(s):  
George A. Kassavetis ◽  
Ashok Kumar ◽  
Garth A. Letts ◽  
E. Peter Geiduschek

Transcription factor (TF) IIIB, which directs RNA polymerase (pol) III to its promoters, is made up of three components: the TATA box-binding protein, the TFIIB-related Brf, and the pol III-specific B′′. Certain mutations in Saccharomyces cerevisiae Brf and B′′ retain TFIIIB transcription factor activity with supercoiled DNA but are inactive with linear duplex DNA. Further analysis shows that these inactive TFIIIB–DNA complexes bind pol III and position it appropriately over the transcriptional start site but do not form DNA strand-separated open promoter complexes. It is proposed that the normal function of TFIIIB combines pol III recruitment with an active role in a subsequent step of transcriptional initiation leading to promoter opening.


2006 ◽  
Vol 34 (6) ◽  
pp. 1082-1087 ◽  
Author(s):  
G.A. Kassavetis ◽  
E.P. Geiduschek

pol (RNA polymerase) III is charged with the task of transcribing nuclear genes encoding diverse small structural and catalytic RNAs. We present a brief review of the current understanding of several aspects of the pol III transcription apparatus. The focus is on yeast and, more specifically, on Saccharomyces cerevisiae; preponderant attention is given to the TFs (transcription initiation factors) and especially to TFIIIB, which is the core pol III initiation factor by virtue of its role in recruiting pol III to the transcriptional start site and its essential roles in forming the transcription-ready open promoter complex. Certain relatively recent developments are also selected for brief comment: (i) the genome-wide analysis of occupancy of pol III-transcribed genes (and other loci) by the transcription apparatus and the location of pol III transcription in the cell; (ii) progress toward a mechanistic and molecular understanding of the regulation of transcription by pol III in yeast; and (iii) recent experiments identifying a high mobility group protein as a fidelity factor that assures selection of the precise transcriptional start site at certain pol III promoters.


2004 ◽  
Vol 279 (31) ◽  
pp. 32401-32406 ◽  
Author(s):  
Diane E. Alexander ◽  
David J. Kaczorowski ◽  
Amy J. Jackson-Fisher ◽  
Drew M. Lowery ◽  
Sara J. Zanton ◽  
...  

2019 ◽  
Author(s):  
Matthias K. Vorländer ◽  
Florence Baudin ◽  
Robyn D. Moir ◽  
René Wetzel ◽  
Wim J. H. Hagen ◽  
...  

ABSTRACTMaf1 is a highly conserved central regulator of transcription by RNA polymerase III (Pol III), and Maf1 activity influences a wide range of phenotypes from metabolic efficiency to lifespan. Here, we present a 3.3 Å cryo-EM structure of yeast Maf1 bound to Pol III, which establishes how Maf1 achieves transcription repression. In the Maf1-bound state, Pol III elements that are involved in transcription initiation are sequestered, and the active site is sealed off due to ordering of the mobile C34 winged helix 2 domain. Specifically, the Maf1 binding site overlaps with the binding site of the Pol III transcription factor TFIIIB and DNA in the pre-initiation complex, rationalizing that binding of Maf1 and TFIIIB to Pol III are mutually exclusive. We validate our structure using variants of Maf1 with impaired transcription-inhibition activity. These results reveal the exact mechanism of Pol III inhibition by Maf1, and rationalize previous biochemical data.


2002 ◽  
Vol 22 (10) ◽  
pp. 3264-3275 ◽  
Author(s):  
Akira Ishiguro ◽  
George A. Kassavetis ◽  
E. Peter Geiduschek

ABSTRACT The essential Saccharomyces cerevisiae gene BDP1 encodes a subunit of RNA polymerase III (Pol III) transcription factor (TFIIIB); TATA box binding protein (TBP) and Brf1 are the other subunits of this three-protein complex. Deletion analysis defined three segments of Bdp1 that are essential for viability. A central segment, comprising amino acids 327 to 353, was found to be dispensable, and cells making Bdp1 that was split within this segment, at amino acid 352, are viable. Suppression of bdp1 conditional viability by overexpressing SPT15 and BRF1 identified functional interactions of specific Bdp1 segments with TBP and Brf1, respectively. A Bdp1 deletion near essential segment I was synthetically lethal with overexpression of PCF1-1, a dominant gain-of-function mutation in the second tetracopeptide repeat motif (out of 11) of the Tfc4 (τ131) subunit of TFIIIC. The analysis also identifies a connection between Bdp1 and posttranscriptional processing of Pol III transcripts. Yeast genomic library screening identified RPR1 as the specific overexpression suppressor of very slow growth at 37°C due to deletion of Bdp1 amino acids 253 to 269. RPR1 RNA, a Pol III transcript, is the RNA subunit of RNase P, which trims pre-tRNA transcript 5′ ends. Maturation of tRNA was found to be aberrant in bdp1-Δ253-269 cells, and RPR1 transcription with the highly resolved Pol III transcription system in vitro was also diminished when recombinant Bdp1Δ253-269 replaced wild-type Bdp1. Physical interaction of RNase P with Bdp1 was demonstrated by coimmunoprecipitation and pull-down assays.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Guillermo Abascal-Palacios ◽  
Laura Jochem ◽  
Carlos Pla-Prats ◽  
Fabienne Beuron ◽  
Alessandro Vannini

AbstractRetrotransposons are endogenous elements that have the ability to mobilise their DNA between different locations in the host genome. The Ty3 retrotransposon integrates with an exquisite specificity in a narrow window upstream of RNA Polymerase (Pol) III-transcribed genes, representing a paradigm for harmless targeted integration. Here we present the cryo-EM reconstruction at 4.0 Å of an active Ty3 strand transfer complex bound to TFIIIB transcription factor and a tRNA gene. The structure unravels the molecular mechanisms underlying Ty3 targeting specificity at Pol III-transcribed genes and sheds light into the architecture of retrotransposon machinery during integration. Ty3 intasome contacts a region of TBP, a subunit of TFIIIB, which is blocked by NC2 transcription regulator in RNA Pol II-transcribed genes. A newly-identified chromodomain on Ty3 integrase interacts with TFIIIB and the tRNA gene, defining with extreme precision the integration site position.


Sign in / Sign up

Export Citation Format

Share Document