scholarly journals Effects of Virtual Reality-Based Physical and Cognitive Training on Executive Function and Dual-Task Gait Performance in Older Adults With Mild Cognitive Impairment: A Randomized Control Trial

Author(s):  
Ying-Yi Liao ◽  
I-Hsuan Chen ◽  
Yi-Jia Lin ◽  
Yue Chen ◽  
Wei-Chun Hsu
Gerontology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 164-173 ◽  
Author(s):  
Frederico Pieruccini-Faria ◽  
Yanina Sarquis-Adamson ◽  
Manuel Montero-Odasso

Background: Older adults with Mild Cognitive Impairment (MCI) are at higher risk of falls and injuries, but the underlying mechanism is poorly understood. Inappropriate anticipatory postural adjustments to overcome balance perturbations are affected by cognitive decline. However, it is unknown whether anticipatory gait control to avoid an obstacle is affected in MCI. Objective: Using the dual-task paradigm, we aim to assess whether gait control is affected during obstacle negotiation challenges in older adults with MCI. Methods: Seventy-nine participants (mean age = 72.0 ± 2.7 years; women = 30.3%) from the “Gait and Brain Study” were included in this study (controls = 27; MCI = 52). In order to assess the anticipatory control behaviour for obstacle negotiation, a 6-m electronic walkway embedded with sensors recorded foot prints to measure gait speed and step length variability, during early (3 steps before the late phase) and late (3 steps before the obstacle) pre-crossing phases of an ad hoc obstacle, set at 15% of participant’s height. Participants walked under single- and dual-task gait (counting backwards by 1’s from 100 while walking) conditions. Three-way mixed repeated-measures analysis of variance models examined differences in gait performance between groups when transitioning between pre-crossing phases towards an obstacle during single- and dual-task conditions. Analyses were adjusted for age, sex, years of education, lower limb function, fear of falling, medical status, depressive symptoms, baseline gait speed and executive function. Results: A significant three-way interaction among groups, pre-crossing phases and task showed that participants with MCI attenuated the gait deceleration (p = 0.02) and performed fewer step length adjustments (p = 0.03) when approaching the obstacle compared with controls while dual-tasking. These interactions were attenuated when executive function performance was added as a covariate in the adjusted statistical model. Conclusion: Older adults with MCI attenuate the anticipatory gait adjustments needed to avoid an obstacle when dual-tasking. Deficits in higher-order cognitive processing may limit obstacle negotiation capabilities in MCI populations, being a potential falls risk factor.


2020 ◽  
pp. 1-7
Author(s):  
Jin-Hyuck Park

ABSTRACT Background: To date, there is a controversy on effects of cognitive intervention to maintain or improve hippocampal function for older adults with mild cognitive impairment (MCI). Objective: The main objective of this study was to exam effects of virtual reality-based spatial cognitive training (VR-SCT) using VR on hippocampal function of older adults with MCI. Method: Fifty-six older adults with MCI were randomly allocated to the experimental group (EG) that received the VR-SCT or the waitlist control group (CG) for a total of 24 sessions. To investigate effects of the VR-SCT on spatial cognition and episodic memory, the Weschsler Adult Intelligence Scale-Revised Block Design Test (WAIS-BDT) and the Seoul Verbal Learning Test (SVLT) were used. Results: During the sessions, the training performances gradually increased (p < .001). After the intervention, the EG showed significant greater improvements in the WAIS-BDT (p < .001, η2 = .667) and recall of the SVLT (p < .05, η2 =.094) compared to the CG but in recognition of the SVLT (p > .05, η2 =.001). Conclusion: These results suggest that the VR-SCT might be clinically beneficial to enhance spatial cognition and episodic memory of older adults with MCI.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ying-Yi Liao ◽  
Mu-N Liu ◽  
Han-Cheng Wang ◽  
Vincent Walsh ◽  
Chi Ieong Lau

Introduction: Engaging in a secondary task while walking increases motor-cognitive interference and exacerbates fall risk in older adults with mild cognitive impairment (MCI). Previous studies have demonstrated that Tai Chi (TC) may improve cognitive function and dual-task gait performance. Intriguingly, with emerging studies also indicating the potential of transcranial direct current stimulation (tDCS) in enhancing such motor-cognitive performance, whether combining tDCS with TC might be superior to TC alone is still unclear. The purpose of this study was to investigate the effects of combining tDCS with TC on dual-task gait in patients with MCI.Materials and Methods: Twenty patients with MCI were randomly assigned to receive either anodal or sham tDCS, both combined with TC, for 36 sessions over 12 weeks. Subjects received 40 min of TC training in each session. During the first 20 min, they simultaneously received either anodal or sham tDCS over the left dorsolateral prefrontal cortex. Outcome measures included dual-task gait performance and other cognitive functions.Results: There were significant interaction effects between groups on the cognitive dual task walking. Compared to sham, the anodal tDCS group demonstrated a greater improvement on cadence and dual task cost of speed.Conclusion: Combining tDCS with TC may offer additional benefits over TC alone in enhancing dual-task gait performance in patients with MCI.Clinical Trial Registration: [www.ClinicalTrials.gov], identifier [TCTR20201201007].


2008 ◽  
Vol 20 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Sylvie Belleville

ABSTRACTRecent randomized control trials and meta-analyses of experimental studies indicate positive effects of non-pharmacological cognitive training on the cognitive function of healthy older adults. Furthermore, a large-scale randomized control trial with older adults, independent at entry, indicated that training delayed their cognitive and functional decline over a five-year follow-up. This supports cognitive training as a potentially efficient method to postpone cognitive decline in persons with mild cognitive impairment (MCI). Most of the research on the effect of cognitive training in MCI has reported increased performance following training on objective measures of memory whereas a minority reported no effect of training on objective cognitive measures. Interestingly, some of the studies that reported a positive effect of cognitive training in persons with MCI have observed large to moderate effect size. However, all of these studies have limited power and few have used long-term follow-ups or functional impact measures. Overall, this review highlights a need for a well-controlled randomized trial to assess the efficacy of cognitive training in MCI. It also raises a number of unresolved issues including proper outcome measures, issues of generalization and choice of intervention format.


2013 ◽  
Vol 25 (5) ◽  
pp. 539-544 ◽  
Author(s):  
Takehiko Doi ◽  
Hyuma Makizako ◽  
Hiroyuki Shimada ◽  
Hyuntae Park ◽  
Kota Tsutsumimoto ◽  
...  

10.2196/24170 ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. e24170
Author(s):  
Mary Hassandra ◽  
Evangelos Galanis ◽  
Antonis Hatzigeorgiadis ◽  
Marios Goudas ◽  
Christos Mouzakidis ◽  
...  

Background Therapeutic virtual reality (VR) has emerged as an effective treatment modality for cognitive and physical training in people with mild cognitive impairment (MCI). However, to replace existing nonpharmaceutical treatment training protocols, VR platforms need significant improvement if they are to appeal to older people with symptoms of cognitive decline and meet their specific needs. Objective This study aims to design and test the acceptability, usability, and tolerability of an immersive VR platform that allows older people with MCI symptoms to simultaneously practice physical and cognitive skills on a dual task. Methods On the basis of interviews with 20 older people with MCI symptoms (15 females; mean age 76.25, SD 5.03 years) and inputs from their health care providers (formative study VR1), an interdisciplinary group of experts developed a VR system called VRADA (VR Exercise App for Dementia and Alzheimer’s Patients). Using an identical training protocol, the VRADA system was first tested with a group of 30 university students (16 females; mean age 20.86, SD 1.17 years) and then with 27 older people (19 females; mean age 73.22, SD 9.26 years) who had been diagnosed with MCI (feasibility studies VR2a and VR2b). Those in the latter group attended two Hellenic Association Day Care Centers for Alzheimer’s Disease and Related Disorders. Participants in both groups were asked to perform a dual task training protocol that combined physical and cognitive exercises in two different training conditions. In condition A, participants performed a cycling task in a lab environment while being asked by the researcher to perform oral math calculations (single-digit additions and subtractions). In condition B, participants performed a cycling task in the virtual environment while performing calculations that appeared within the VR app. Participants in both groups were assessed in the same way; this included questionnaires and semistructured interviews immediately after the experiment to capture perceptions of acceptability, usability, and tolerability, and to determine which of the two training conditions each participant preferred. Results Participants in both groups showed a significant preference for the VR condition (students: mean 0.66, SD 0.41, t29=8.74, P<.001; patients with MCI: mean 0.72, SD 0.51, t26=7.36, P<.001), as well as high acceptance scores for intended future use, attitude toward VR training, and enjoyment. System usability scale scores (82.66 for the students and 77.96 for the older group) were well above the acceptability threshold (75/100). The perceived adverse effects were minimal, indicating a satisfactory tolerability. Conclusions The findings suggest that VRADA is an acceptable, usable, and tolerable system for physical and cognitive training of older people with MCI and university students. Randomized controlled trial studies are needed to assess the efficacy of VRADA as a tool to promote physical and cognitive health in patients with MCI.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
S. Falbo ◽  
G. Condello ◽  
L. Capranica ◽  
R. Forte ◽  
C. Pesce

Physical and cognitive training seem to counteract age-related decline in physical and mental function. Recently, the possibility of integrating cognitive demands into physical training has attracted attention. The purpose of this study was to evaluate the effects of twelve weeks of designed physical-cognitive training on executive cognitive function and gait performance in older adults. Thirty-six healthy, active individuals aged 72.30 ± 5.84 years were assigned to two types of physical training with major focus on physical single task (ST) training (n=16) and physical-cognitive dual task (DT) training (n=20), respectively. They were tested before and after the intervention for executive function (inhibition, working memory) through Random Number Generation and for gait (walking with/without negotiating hurdles) under both single and dual task (ST, DT) conditions. Gait performance improved in both groups, while inhibitory performance decreased after exercise training with ST focus but tended to increase after training with physical-cognitive DT focus. Changes in inhibition performance were correlated with changes in DT walking performance with group differences as a function of motor task complexity (with/without hurdling). The study supports the effectiveness of group exercise classes for older individuals to improve gait performance, with physical-cognitive DT training selectively counteracting the age-related decline in a core executive function essential for daily living.


Author(s):  
Mary Hassandra ◽  
Evangelos Galanis ◽  
Antonis Hatzigeorgiadis ◽  
Marios Goudas ◽  
Christos Mouzakidis ◽  
...  

BACKGROUND Therapeutic virtual reality (VR) has emerged as an effective treatment modality for cognitive and physical training in people with mild cognitive impairment (MCI). However, to replace existing nonpharmaceutical treatment training protocols, VR platforms need significant improvement if they are to appeal to older people with symptoms of cognitive decline and meet their specific needs. OBJECTIVE This study aims to design and test the acceptability, usability, and tolerability of an immersive VR platform that allows older people with MCI symptoms to simultaneously practice physical and cognitive skills on a dual task. METHODS On the basis of interviews with 20 older people with MCI symptoms (15 females; mean age 76.25, SD 5.03 years) and inputs from their health care providers (formative study VR1), an interdisciplinary group of experts developed a VR system called VRADA (VR Exercise App for Dementia and Alzheimer’s Patients). Using an identical training protocol, the VRADA system was first tested with a group of 30 university students (16 females; mean age 20.86, SD 1.17 years) and then with 27 older people (19 females; mean age 73.22, SD 9.26 years) who had been diagnosed with MCI (feasibility studies VR2a and VR2b). Those in the latter group attended two Hellenic Association Day Care Centers for Alzheimer’s Disease and Related Disorders. Participants in both groups were asked to perform a dual task training protocol that combined physical and cognitive exercises in two different training conditions. In condition A, participants performed a cycling task in a lab environment while being asked by the researcher to perform oral math calculations (single-digit additions and subtractions). In condition B, participants performed a cycling task in the virtual environment while performing calculations that appeared within the VR app. Participants in both groups were assessed in the same way; this included questionnaires and semistructured interviews immediately after the experiment to capture perceptions of acceptability, usability, and tolerability, and to determine which of the two training conditions each participant preferred. RESULTS Participants in both groups showed a significant preference for the VR condition (students: mean 0.66, SD 0.41, <i>t</i><sub>29</sub>=8.74, <i>P</i>&lt;.001; patients with MCI: mean 0.72, SD 0.51, <i>t</i><sub>26</sub>=7.36, <i>P</i>&lt;.001), as well as high acceptance scores for intended future use, attitude toward VR training, and enjoyment. System usability scale scores (82.66 for the students and 77.96 for the older group) were well above the acceptability threshold (75/100). The perceived adverse effects were minimal, indicating a satisfactory tolerability. CONCLUSIONS The findings suggest that VRADA is an acceptable, usable, and tolerable system for physical and cognitive training of older people with MCI and university students. Randomized controlled trial studies are needed to assess the efficacy of VRADA as a tool to promote physical and cognitive health in patients with MCI.


Sign in / Sign up

Export Citation Format

Share Document