scholarly journals Molecular Identity and Location Influence Purkinje Cell Vulnerability in Autosomal-Recessive Spastic Ataxia of Charlevoix-Saguenay Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Brenda Toscano Márquez ◽  
Anna A. Cook ◽  
Max Rice ◽  
Alexia Smileski ◽  
Kristen Vieira-Lomasney ◽  
...  

Patterned cell death is a common feature of many neurodegenerative diseases. In patients with autosomal-recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) and mouse models of ARSACS, it has been observed that Purkinje cells in anterior cerebellar vermis are vulnerable to degeneration while those in posterior vermis are resilient. Purkinje cells are known to express certain molecules in a highly stereotyped, patterned manner across the cerebellum. One patterned molecule is zebrin, which is expressed in distinctive stripes across the cerebellar cortex. The different zones delineated by the expression pattern of zebrin and other patterned molecules have been implicated in the patterning of Purkinje cell death, raising the question of whether they contribute to cell death in ARSACS. We found that zebrin patterning appears normal prior to disease onset in Sacs–/– mice, suggesting that zebrin-positive and -negative Purkinje cell zones develop normally. We next observed that zebrin-negative Purkinje cells in anterior lobule III were preferentially susceptible to cell death, while anterior zebrin-positive cells and posterior zebrin-negative and -positive cells remained resilient even at late disease stages. The patterning of Purkinje cell innervation to the target neurons in the cerebellar nuclei (CN) showed a similar pattern of loss: neurons in the anterior CN, where inputs are predominantly zebrin-negative, displayed a loss of Purkinje cell innervation. In contrast, neurons in the posterior CN, which is innervated by both zebrin-negative and -positive puncta, had normal innervation. These results suggest that the location and the molecular identity of Purkinje cells determine their susceptibility to cell death in ARSACS.

1993 ◽  
Vol 52 (3) ◽  
pp. 286
Author(s):  
H. B. Clark ◽  
H. T. Orr ◽  
R. Ehlenfeldt ◽  
W. S. Yunis ◽  
R. M. Feddersen

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ryan T Willett ◽  
N Sumru Bayin ◽  
Andrew S Lee ◽  
Anjana Krishnamurthy ◽  
Alexandre Wojcinski ◽  
...  

For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.


2015 ◽  
Vol 7 (276) ◽  
pp. 276ra26-276ra26 ◽  
Author(s):  
Charles H. Vite ◽  
Jessica H. Bagel ◽  
Gary P. Swain ◽  
Maria Prociuk ◽  
Tracey U. Sikora ◽  
...  

2017 ◽  
Vol 58 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Chang Xie ◽  
Xue-Min Gong ◽  
Jie Luo ◽  
Bo-Liang Li ◽  
Bao-Liang Song

2019 ◽  
Vol 21 (1) ◽  
pp. 216 ◽  
Author(s):  
Francesca Prestori ◽  
Francesco Moccia ◽  
Egidio D’Angelo

Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of more than 40 autosomal-dominant genetic and neurodegenerative diseases characterized by loss of balance and motor coordination due to dysfunction of the cerebellum and its efferent connections. Despite a well-described clinical and pathological phenotype, the molecular and cellular events that underlie neurodegeneration are still poorly undaerstood. Emerging research suggests that mutations in SCA genes cause disruptions in multiple cellular pathways but the characteristic SCA pathogenesis does not begin until calcium signaling pathways are disrupted in cerebellar Purkinje cells. Ca2+ signaling in Purkinje cells is important for normal cellular function as these neurons express a variety of Ca2+ channels, Ca2+-dependent kinases and phosphatases, and Ca2+-binding proteins to tightly maintain Ca2+ homeostasis and regulate physiological Ca2+-dependent processes. Abnormal Ca2+ levels can activate toxic cascades leading to characteristic death of Purkinje cells, cerebellar atrophy, and ataxia that occur in many SCAs. The output of the cerebellar cortex is conveyed to the deep cerebellar nuclei (DCN) by Purkinje cells via inhibitory signals; thus, Purkinje cell dysfunction or degeneration would partially or completely impair the cerebellar output in SCAs. In the absence of the inhibitory signal emanating from Purkinje cells, DCN will become more excitable, thereby affecting the motor areas receiving DCN input and resulting in uncoordinated movements. An outstanding advantage in studying the pathogenesis of SCAs is represented by the availability of a large number of animal models which mimic the phenotype observed in humans. By mainly focusing on mouse models displaying mutations or deletions in genes which encode for Ca2+ signaling-related proteins, in this review we will discuss the several pathogenic mechanisms related to deranged Ca2+ homeostasis that leads to significant Purkinje cell degeneration and dysfunction.


2002 ◽  
Vol 22 (9) ◽  
pp. 3531-3542 ◽  
Author(s):  
Abdel M. Ghoumari ◽  
Rosine Wehrlé ◽  
Chris I. De Zeeuw ◽  
Constantino Sotelo ◽  
Isabelle Dusart

2006 ◽  
Vol 96 (6) ◽  
pp. 3485-3491 ◽  
Author(s):  
Soon-Lim Shin ◽  
Erik De Schutter

Purkinje cells (PCs) integrate all computations performed in the cerebellar cortex to inhibit neurons in the deep cerebellar nuclei (DCN). Simple spikes recorded in vivo from pairs of PCs separated by <100 μm are known to be synchronized with a sharp peak riding on a broad peak, but the significance of this finding is unclear. We show that the sharp peak consists exclusively of simple spikes associated with pauses in firing. The broader, less precise peak was caused by firing-rate co-modulation of faster firing spikes. About 13% of all pauses were synchronized, and these pauses had a median duration of 20 ms. As in vitro studies have reported that synchronous pauses can reliably trigger spikes in DCN neurons, we suggest that the subgroup of spikes causing the sharp peak is important for precise temporal coding in the cerebellum.


Sign in / Sign up

Export Citation Format

Share Document