scholarly journals Cerebellar nuclei excitatory neurons regulate developmental scaling of presynaptic Purkinje cell number and organ growth

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ryan T Willett ◽  
N Sumru Bayin ◽  
Andrew S Lee ◽  
Anjana Krishnamurthy ◽  
Alexandre Wojcinski ◽  
...  

For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.

2018 ◽  
Author(s):  
Ryan T. Willett ◽  
Alexandre Wojcinski ◽  
N. Sumru Bayin ◽  
Zhimin Lao ◽  
Daniel Stephen ◽  
...  

AbstractEfficient function of neural systems requires the production of specific cell types in the correct proportions. Here we report that reduction of the earliest born neurons of the cerebellum, excitatory cerebellar nuclei neurons (eCN), results in a subsequent reduction in growth of the cerebellar cortex due to an accompanying loss of their presynaptic target Purkinje cells. Conditional knockout of the homeobox genes En1 and En2 (En1/2) in the rhombic lip-derived eCN and granule cell precursors leads to embryonic loss of a subset of medial eCN and cell non-autonomous and location specific loss of Purkinje cells, with subsequent proportional scaling down of cortex growth. We propose that subsets of eCN dictate the survival of their specific Purkinje cell partners, and in turn sonic hedgehog secreted by Purkinje cells scales the expansion of granule cells and interneurons to produce functional local circuits and the proper folded morphology of the cerebellum.


2008 ◽  
Vol 295 (2) ◽  
pp. R596-R603 ◽  
Author(s):  
Jayanth Ramadoss ◽  
Emilie R. Lunde ◽  
Nengtai Ouyang ◽  
Wei-Jung A. Chen ◽  
Timothy A. Cudd

Ethanol is now considered the most common human teratogen. Educational campaigns have not reduced the incidence of ethanol-mediated teratogenesis, leading to a growing interest in the development of therapeutic prevention or mitigation strategies. On the basis of the observation that maternal ethanol consumption reduces maternal and fetal pH, we hypothesized that a pH-sensitive pathway involving the TWIK-related acid-sensitive potassium channels (TASKs) is implicated in ethanol-induced injury to the fetal cerebellum, one of the most sensitive targets of prenatal ethanol exposure. Pregnant ewes were intravenously infused with ethanol (258 ± 10 mg/dl peak blood ethanol concentration) or saline in a “3 days/wk binge” pattern throughout the third trimester. Quantitative stereological analysis demonstrated that ethanol resulted in a 45% reduction in the total number of fetal cerebellar Purkinje cells, the cell type most sensitive to developmental ethanol exposure. Extracellular pH manipulation to create the same degree and pattern of pH fall caused by ethanol (manipulations large enough to inhibit TASK 1 channels), resulted in a 24% decrease in Purkinje cell number. We determined immunohistochemically that TASK 1 channels are expressed in Purkinje cells and that the TASK 3 isoform is expressed in granule cells of the ovine fetal cerebellum. Pharmacological blockade of both TASK 1 and TASK 3 channels simultaneous with ethanol effectively prevented any reduction in fetal cerebellar Purkinje cell number. These results demonstrate for the first time functional significance of fetal cerebellar two-pore domain pH-sensitive channels and establishes them as a potential therapeutic target for prevention of ethanol teratogenesis.


2020 ◽  
pp. 497-504
Author(s):  
Edmund T. Rolls

The cerebellar cortex appears to be involved in predictive feedforward control to generate smooth movements. There is a beautiful network architecture which suggests that the granule cells perform expansion recoding of the inputs; that these connect to the Purkinje cells via an architecture that ensures regular sampling; and that each Purkinje cell has a single teacher, the climbing fibre, which produces associative long-term synaptic depression as part of perceptron-like learning.


2006 ◽  
Vol 96 (6) ◽  
pp. 3485-3491 ◽  
Author(s):  
Soon-Lim Shin ◽  
Erik De Schutter

Purkinje cells (PCs) integrate all computations performed in the cerebellar cortex to inhibit neurons in the deep cerebellar nuclei (DCN). Simple spikes recorded in vivo from pairs of PCs separated by <100 μm are known to be synchronized with a sharp peak riding on a broad peak, but the significance of this finding is unclear. We show that the sharp peak consists exclusively of simple spikes associated with pauses in firing. The broader, less precise peak was caused by firing-rate co-modulation of faster firing spikes. About 13% of all pauses were synchronized, and these pauses had a median duration of 20 ms. As in vitro studies have reported that synchronous pauses can reliably trigger spikes in DCN neurons, we suggest that the subgroup of spikes causing the sharp peak is important for precise temporal coding in the cerebellum.


Neuron ◽  
2016 ◽  
Vol 91 (2) ◽  
pp. 312-319 ◽  
Author(s):  
Laurens Witter ◽  
Stephanie Rudolph ◽  
R. Todd Pressler ◽  
Safiya I. Lahlaf ◽  
Wade G. Regehr

Neuron ◽  
2016 ◽  
Vol 91 (6) ◽  
pp. 1330-1341 ◽  
Author(s):  
Chong Guo ◽  
Laurens Witter ◽  
Stephanie Rudolph ◽  
Hunter L. Elliott ◽  
Katelin A. Ennis ◽  
...  

2017 ◽  
Vol 39 (6) ◽  
pp. 487-497 ◽  
Author(s):  
Kristbjörg Sveinsdóttir ◽  
John-Kalle Länsberg ◽  
Snjólaug Sveinsdóttir ◽  
Martin Garwicz ◽  
Lennart Ohlsson ◽  
...  

Cerebellar growth is impeded following very preterm birth in human infants and the observed reduction in cerebellar volume is associated with neurodevelopmental impairment. Decreased levels of circulating insulin-like growth factor 1 (IGF-1) are associated with decreased cerebellar volume. The relationship between preterm birth, circulating IGF-1, and key cell populations supporting cerebellar proliferation is unknown. The aim of this study was to evaluate the effect of preterm birth on postnatal growth, circulating IGF-1, and cerebellar maturation in a preterm rabbit pup model. Preterm rabbit pups (PT) were delivered by cesarean section at day 29 of gestation, cared for in closed incubators with humidified air, and gavage fed with formula. Control term pups (T) delivered by spontaneous vaginal delivery at day 32 of gestation were housed and fed by their lactating doe. In vivo perfusion-fixation for immunohistochemical evaluation of cerebellar proliferation, cell maturation, and apoptosis was performed at repeated time points in PT and T pups. Results show that the mean weight of the pups and circulating IGF-1 protein levels were lower in the PT group at all time points (p < 0.05) than in the T group. Postnatal weight development correlated with circulating IGF-1 (r2 = 0.89) independently of gestational age at birth and postnatal age. The proliferative (Ki-67-positive) portion of the external granular layer (EGL) was decreased in the PT group at postnatal day 2 (P2) compared to in the T group (p = 0.01). Purkinje cells exhibited decreased calbindin staining at P0 (p = 0.003), P2 (p = 0.004), and P5 (p = 0.04) in the PT group compared to in the T group. Staining for sonic hedgehog was positive in neuronal EGL progenitors and Purkinje cells at early time points but was restricted to a well-defined Purkinje cell monolayer at later time points. Preterm birth in rabbit pups is associated with lower circulating levels of IGF-1, decreased postnatal growth, and decreased cerebellar EGL proliferation and Purkinje cell maturation. The preterm rabbit pup model exhibits important characteristics of human preterm birth, and may thus be suitable for the evaluation of interventions aiming to modify growth and cerebellar development in the preterm population.


1984 ◽  
Vol 221 (1224) ◽  
pp. 349-367 ◽  

The development of the Purkinje cells in normal C57 mice was studied from 7-100 d post natum . The growth of the dendritic trees was analysed both metrically and topologically using the method of vertex analysis (Berry & Flinn 1983a). Granule and Purkinje cell counts were made so that Purkinje cell segment production could be correlated with the number of parallel fibres deposited. Both topological and metrical results indicate that from 7 to 30 d post natum the Purkinje cell dendritic trees expand massively; accounting for 87 % of total segment elaboration, reaching their lateral boundaries by 12-15 d post natum and then advancing towards the pial surface. Continued lateral expansion is constrained by the proximity of dendrites from neighbouring trees. Growth proceeds upwards through the neuropil as a front of prolific random terminal branching with inhibitory forces acting at the edges of the growth corridor and behind the growth front to prevent overlapping of dendrites. By 30 d post natum all boundaries are reached and the size of the dendritic field is fixed. Trees averaged 711.2 segments ±21.45 with a mean distance from root to terminal segment of 133.5 ± 2.9 pm. The Va/Vb vertex ratios and the levels of trichotomy during this period indicate that branching patterns deviate from pure random terminal additions in a dichotomous tree. There is opportunity for non-random growth at the areas of inhibitory action. Beyond 30 d post natum remodelling occurs within the arbor which involves segment loss in the subpial region (orders above 16) and segment elaboration within the tree (orders 8- 16) causing increased density of dendrites and overlapping of segments. The frequencies of segments and terminals are restored to symmetrical distributions through the orders of the trees from the skewed distributions associated with the frontal advance in earlier growth. During remodelling the Va/Vb vertex ratios and percentage of trichotomous nodes are consistent with growth through dichotomous random terminal branching. Path lengths of 8 um between each order are seen as regular increments throughout entire trees at 100 d post natum. The final tree produced is indistinguishable from a network grown entirely by random terminal dichotomous branching with some 6% trichotomy and a Va/Vb vertex ratios of 0.92. Granule cell number within the granular layer increases rapidly up to 15 d post natum after which cell death causes a decrease to stable levels beyond 30 d post natum . Purkinje cell number is constant throughout the entire study. However, there is no correlation between the numbers of granule cells (parallel fibres) per Purkinje cell and the number of Purkinje cell branches elaborated beyond early development.


The cerebellum, the deep cerebellar nuclei, and the inferior olivary nucleus of the heterozygote Lurcher mutant mouse have been compared with the same structures in normal littermates. The comparison was made using light and electron microscopic methods for qualitative observations and light microscopic methods for quantitative observations. The study included the newborn period from 4 days of age up to 730 days, which is old age for a mouse. The cerebellum of the normal mouse is similar to that of many other species though apparently minor structural differences are seen. Amongst these was the similarity between the mouse climbing fibre and mossy fibre glomeruli which contrasts with the rat where they can be distinguished by the high density of synaptic vesicles and central cluster of mitochondria in the climbing fibres. In Golgi stained material the inferior olivary nucleus of the normal mouse showed cells with highly ramified dendrites and cells with simple dendrite patterns. In the adult Lurcher mouse the cerebellum is much smaller than is normal. There are no Purkinje cells and the internal granule cell layer is reduced in thickness and density. Examination of younger animals shows that Purkinje cells are present and that they undergo degeneration. In Golgi stained material from younger animals Purkinje cells often show more than one primary dendrite, sometimes as many as five, and somatic spines persist well beyond the first week of life. Cytoplasmic organelles often have a random orientation and the mitochondria are rounded rather like those seen in the nervous mutant. Granule cells in the adult Lurcher mutant are reduced in number and during the developmental period degenerative changes are seen. The Golgi cells and stellate cells are relatively normal and some cells, identified as basket cells, are seen. The inferior olivary nucleus is found with ease in the Lurcher mutant and is as extensive as in the normal mouse. However, in Golgi stained material only cells with highly ramified dendrites are seen. In addition the total number of neurons is reduced. It is possible that the neurons with a simple dendrite pattern have climbing fibres which pass only to the Purkinje cells. The deep cerebellar nuclei in the normal mouse cannot be separated easily into their three subdivisions, lateral, interpositus and medial. In the Lurcher mutant the neurons are of similar size to those of the normal mouse but they are crowded more closely together than is normal. In the Lurcher mutant as in the normal adult the neuronal cell bodies are covered with synapses and not with glial cells. Estimates of total cell numbers were made in order to obtain evidence about the time course of the development of the changes in structure and to make a detailed comparison between the normal mouse and the Lurcher mutant with respect to Purkinje cells, granule cells, olive neurons, and deep cerebellar nuclei neurons. In the normal mouse the mean number of Purkinje cells between 10 and 730 days was 177 000, s.d. ± 11600, n = 12. The number of granule cells probably reached a peak at about 17 days. At 26 days post-natal the number estimated was 27 million and at 730 days 28 million. The mean number of olive neurons between 14 and 730 days post-natal was 32700, s.d. ± 1900, 9; the mean number of deep cerebellar neurons counted at three adult ages was 17 600, s.d. ± 1800. In the adult the ratio of Purkinje cells to olive cells is ca . 5.4:1, of granule cells to Purkinje cells is ca. 170:1, of Purkinje cells to deep cerebellar nuclei neurons is 10:1, and of olive neurons to deep cerebellar nuclei neurons is 1.85:1. This last would chiefly be of interest if there are olive neurons projecting solely to deep cerebellar neurons. In the Lurcher mutant the number of Purkinje cells falls below normal from 8 days post-natally, reaches 10% of normal at 26 days and probably falls to zero at around 90 days. At this point such are the changes in the overall structure that confusion of Purkinje cells with Golgi cells may occur. At 4 days post-natal age the number of granule cells is smaller than normal by 25 % and this difference increases with age to a reduction of ca. 90 %. The number of olive cells is close to normal until 8 days of age, is only 60 % of normal at 15 days when the highest number is reached, and is 25 % of normal at 121 days. The deep cerebellar nuclei neuron numbers were the same as those in the normal. Included in the discussion is a detailed critical comparison of these results from the normal mouse with all previous estimates of cell numbers in the cerebellum. The lesion in Lurcher is compared with that found in the other mouse cerebellar mutants and with experimentally evoked lesions of the cerebellum. For the Lurcher mutant the tentative conclusion is that the primary lesion may arise in the Purkinje cells.


1996 ◽  
Vol 76 (5) ◽  
pp. 3102-3113 ◽  
Author(s):  
H. Lu ◽  
L. J. Larson-Prior

1. Immunocytochemical studies of the turtle brain revealed the presence of serotonin (5-hydroxytryptamine, 5-HT) immunoreactive (5-HT-ir) processes in the granule and Purkinje cell layers, but not in the molecular layer (ML), of the cerebellar cortex. Immunoreactive axonal profiles were present throughout the granule cell layer (GCL) where they generally coursed in an anteroposterior direction and could frequently be seen to ascend toward the Purkinje cell layer (PCL). Occasional 5-HT-ir processes were observed adjacent to Purkinje cell somata. 2. The effects of exogenously applied serotonin on mossy fiber and parallel fiber evoked responses in turtle Purkinje cells were examined by use of intrasomatic and intradendritic recordings in an intact cerebellar preparation in vitro. 3. Bath application of serotonin (0.2–1.0 microM) produced a dose-dependent reduction in Purkinje cell membrane resistance, which was not correlated with changes in postsynaptic response amplitude. At 5-HT concentrations > 1.0 microM (0.01–5 mM), resistance values returned to control levels. No consistent changes in spike width or postspike afterhyperpolarization were seen in response to serotonin application, nor were endogenous pacemaker-like discharges affected. Firing rate, assessed as threshold response to depolarizing current injection (0.3–1.0 nA, 1 s duration), was increased in 51% and decreased in 40% of cells tested. 4. Single stimuli delivered to either the cerebellar peduncle or the GCL resulted in the activation of fast excitatory postsynaptic potentials (fEPSP). These responses were dose dependently reduced in amplitude by bath application of serotonin (0.2–1.0 microM). At concentrations ranging from 10 to 100 microM, the response amplitude following agonist application plateaued at approximately 70% of control value. With higher dose applications (0.5-5 mM) of serotonin, the response amplitude exhibited a steep reduction (from 65-10% of control value). 5. Brief trains of stimuli (5 stimuli, 50 Hz) delivered to either the cerebellar peduncle or the GCL resulted in the activation of slow excitatory postsynaptic potentials (sEPSP). The peak amplitude of this response was unaffected by bath application of serotonin at concentrations ranging from 0.2 to 100 microM. At higher concentrations (0.5–5 mM), the sEPSP peak amplitude was dose-dependently reduced, with the largest amplitude reduction seen after peduncular stimulation. 6. It is suggested that serotonin acts as a modulator of fast excitatory synaptic activity in the cerebellar cortex, while exerting little affect on slow excitatory events. The fact that serotonin preferentially affects fast excitatory transmission may have important implications for the integration of incoming sensory signals at both the granule and Purkinje cell level.


Sign in / Sign up

Export Citation Format

Share Document