scholarly journals Developmentally Regulated Modulation of Lumbar Motoneurons by Metabotropic Glutamate Receptors: A Cellular and Behavioral Analysis in Newborn Mice

2021 ◽  
Vol 15 ◽  
Author(s):  
Camille Quilgars ◽  
Jean-René Cazalets ◽  
Sandrine S. Bertrand

The present study explores the impact of metabotropic glutamate receptor (mGluR) activation on activity-dependent synaptic plasticity (ADSP) and the intrinsic membrane properties of lumbar motoneurons (MNs) using a combination of biochemical, pharmacological, electrophysiological and behavioral techniques. Using spinal cord slices from C57BL/6JRJ mice at two developmental stages, 1-3 and 8-12 postnatal days (P1-P3; P8-P12, respectively), we found that ADSP expressed at glutamatergic synapses between axons conveyed in the ventrolateral funiculus (VLF) and MNs, involved mGluR activation. Using specific agonists of the three groups of mGluRs, we observed that mGluR stimulation causes subtype-specific and developmentally regulated modulation of the ADSP and synaptic transmission at VLF-MN synapses as well as the intrinsic membrane properties of MNs. RT-qPCR analysis revealed a downregulation of mGluR gene expression with age in the ventral part of the lumbar spinal cord. Interestingly, the selective harvest by laser microdissection of MNs innervating the Gastrocnemius and Tibialis anterior muscles unraveled that the level of Grm2 expression is higher in Tibialis MNs compared to Gastrocnemius MNs suggesting a specific mGluR gene expression profile in these two MN pools. Finally, we assessed the functional impact of mGluR modulation on electrically induced bouts of fictive locomotion in the isolated spinal cord preparation of P1-P3 mice, and in vivo during spontaneous episodes of swimming activity in both P1-P3 and P8-P12 mouse pups. We observed that the mGluR agonists induced distinct and specific effects on the motor burst amplitudes and period of the locomotor rhythms tested and that their actions are function of the developmental stage of the animals. Altogether our data show that the metabotropic glutamatergic system exerts a complex neuromodulation in the developing spinal lumbar motor networks and provide new insights into the expression and modulation of ADSP in MNs.

1999 ◽  
Vol 82 (5) ◽  
pp. 2061-2069 ◽  
Author(s):  
Weihong Lin ◽  
Sue C. Kinnamon

Monosodium glutamate (MSG) elicits a unique taste in humans called umami. Recent molecular studies suggest that glutamate receptors similar to those in brain are present in taste cells, but their precise role in taste transduction remains to be elucidated. We used giga-seal whole cell recording to examine the effects of MSG and glutamate receptor agonists on membrane properties of taste cells from rat fungiform papillae. MSG (1 mM) induced three subsets of responses in cells voltage-clamped at −80 mV: a decrease in holding current (subset I), an increase in holding current (subset II), and a biphasic response consisting of an increase, followed by a decrease in holding current (subset III). Most subset II glutamate responses were mimicked by the ionotropic glutamate receptor (iGluR) agonist N-methyl-d-aspartate (NMDA). The current was potentiated by glycine and was suppressed by the NMDA receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (AP5). The group III metabotropic glutamate receptor (mGluR) agonistl-2-amino-4-phosphonobutyric acid (l-AP4) usually mimicked the subset I glutamate response. This hyperpolarizing response was suppressed by the mGluR antagonist (RS)-α-cyclopropyl-4-phosphonophenylglycine (CPPG) and by 8-bromo-cAMP, suggesting a role for cAMP in the transduction pathway. In a small subset of taste cells, l-AP4 elicited an increase in holding current, resulting in taste cell depolarization under current clamp. Taken together, our results suggest that NMDA-like receptors and at least two types of group III mGluRs are present in taste receptor cells, and these may be coactivated by MSG. Further studies are required to determine which receptors are located on the apical membrane and how they contribute to the umami taste.


2003 ◽  
Vol 138 (8) ◽  
pp. 1417-1424 ◽  
Author(s):  
Hui-Fang Li ◽  
Meng-Ya Wang ◽  
Jessica Knape ◽  
Joan J Kendig

2008 ◽  
Vol 33 (10) ◽  
pp. 1920-1924 ◽  
Author(s):  
Li-Min Mao ◽  
Guo-Chi Zhang ◽  
Xian-Yu Liu ◽  
Eugene E. Fibuch ◽  
John Q. Wang

1997 ◽  
Vol 78 (6) ◽  
pp. 3428-3437 ◽  
Author(s):  
L. A. Schrader ◽  
J. G. Tasker

Schrader, L. A. and J. G. Tasker. Modulation of multiple potassium currents by metabotropic glutamate receptors in neurons of the hypothalamic supraoptic nucleus. J. Neurophysiol. 78: 3428–3437, 1997. We studied the effects of activation of the metabotropic glutamate receptors on intrinsic currents of magnocellular neurons of the supraoptic nucleus (SON) with whole cell patch-clamp and conventional intracellular recordings in coronal slices (400 μm) of the rat hypothalamus. Trans-(±)-1-amino-1,3-cyclopentane dicarboxylic acid ( trans-ACPD, 10–100 μM), a broad-spectrum metabotropic glutamate receptor agonist, evoked an inward current (18.7 ± 3.45 pA) or a slow depolarization (7.35 ± 4.73 mV) and a 10–30% decrease in whole cell conductance in ∼50% of the magnocellular neurons recorded at resting membrane potential. The decrease in conductance and the inward current were caused largely by the attenuation of a resting potassium conductance because they were reduced by the replacement of intracellular potassium with an equimolar concentration of cesium or by the addition of potassium channel blockers to the extracellular medium. In some cells, trans-ACPD still elicited a small inward current after blockade of potassium currents, which was abolished by the calcium channel blocker, CdCl2. Trans-ACPD also reduced voltage-gated and Ca2+-activated K+ currents in these cells. Trans-ACPD reduced the transient outward current ( I A) by 20–70% and/or the I A-mediated delay to spike generation in ∼60% of magnocellular neurons tested. The cells that showed a reduction of I A generally also showed a 20–60% reduction in a voltage-gated, sustained outward current. Finally, trans-ACPD attenuated the Ca2+-dependent outward current responsible for the afterhyperpolarization ( I AHP) in ∼60% of cells tested. This often revealed an underlying inward current thought to be responsible for the depolarizing afterpotential seen in some magnocellular neurons. (RS)-3,5-dihydroxyphenylglycine, a group I receptor-selective agonist, mimicked the effects of trans-ACPD on the resting and voltage-gated K+ currents. (RS)-α-methyl-4-carboxyphenylglycine, a group I/II metabotropic glutamate receptor antagonist, blocked these effects. A group II receptor agonist, 2S,1′S,2′S-2carboxycyclopropylglycine and a group III receptor agonist, l(+)-2-amino-4-phosphonobutyric acid, had no effect on the resting or voltage-gated K+ currents, indicating that the reduction of K+ currents was mediated by group I receptors. About 80% of the SON cells that were labeled immunohistochemically for vasopressin responded to metabotropic glutamate receptor activation, whereas only 33% of labeled oxytocin cells responded, suggesting that metabotropic receptors are expressed preferentially in vasopressinergic neurons. These data indicate that activation of the group I metabotropic glutamate receptors leads to an increase in the postsynaptic excitability of magnocellular neurons by blocking resting K+ currents as well as by reducing voltage-gated and Ca2+-activated K+ currents.


Sign in / Sign up

Export Citation Format

Share Document