scholarly journals EEG Assessment in Patients With Disorders of Consciousness: Aims, Advantages, Limits, and Pitfalls

2021 ◽  
Vol 12 ◽  
Author(s):  
Davide Rossi Sebastiano ◽  
Giulia Varotto ◽  
Davide Sattin ◽  
Silvana Franceschetti

This study presents a brief review of literature exploring simple EEG-polygraphic examinations and procedures that can be carried out at a patient's bedside. These include EEG with a common electrode array and sleep evaluation. The review briefly discusses more complex analytical techniques, such as the application of advanced EEG signal processing methods developed by our research group, to define what type of consistent markers are suitable for clinical use or to better understand complex patient conditions. These advanced analytical techniques aim to detect relevant EEG-based markers that could be useful in evaluating patients and predicting outcomes. These data could contribute to future developments in research.

2018 ◽  
pp. 25-34

Implementación de métodos de procesamiento de señales EEG para aplicaciones de comunicación y control Implementation of EEG signal processing methods for communication and control application Shirley Cordova Villar1, Willian A. Perez Oviedo1, Avid Román Gonzalez12 1 Universidad Nacional San Antonio Abad del Cusco 2 TELECOM ParisTech, 46 rue Barrault, 75013 – Paris, Francia DOI: https://doi.org/10.33017/RevECIPeru2013.0004/  Resumen La interface cerebro-computador (ICC) es un instrumento de comunicación entre la mente o la función cognitiva del ser humano y el ambiente externo, esta función mental es creada por el cerebro; las señales son capturadas, pre-procesadas y puestas en un clasificador. Este artículo tiene como objetivo la implementación y comparación de algoritmos basados en diferentes métodos de procesamiento de señales EEG para aplicaciones ICC que actualmente existen, para encontrar que método proporciona mejores resultados. Descriptores: ICC, EEG, procesamiento de señales, parámetros AAR, clasificación, comunicación y control, pensamiento Abstract   The Brain Computer Interface (BCI) is a communication instrument between mental or cognitive human function and the external environment, this mental function is created by the brain; the signals are captured, pre-processed and put into a classifier. This article aims to implement and compare the algorithms based on different methods of EEG signal processing for BCI applications that currently exist, in order to find methods whose algorithms provide better results. Keywords: BCI, EEG, signal processing, AAR parameters, classification, communication and control, thought


Author(s):  
Wei Liang ◽  
Lai-bin Zhang ◽  
Zhao-hui Wang

In China, the rarefaction-pressure wave techniques are widely used to diagnose the leakage fault for liquid pipelines. Many leaking propagating assumptions, such as stable single-phased flow hypothesis and none rarefaction wave front hypothesis, are often uncertain in the process of leak detection, which can easily result in some errors. Thus the rarefaction-pressure wave techniques should be integrated with other analytical techniques to compute a more accurate leak location. Additionally, the development trends of rarefaction-pressure wave techniques lie in three aspects. First, rarefaction-pressure wave detection techniques will be integrated with other compatible detection techniques and modern signal processing methods to solve the complex problems encountered in leak detection. Second, studies of rarefaction-pressure wave techniques have advanced to a new stage. The deductions on propagation mechanism of rarefaction-pressure wave have been successfully applied to determine leaks qualitatively. Third, analysis on rarefaction-pressure wave detection techniques will be made from a quantitative point of view. The quantitative data have been used to deduce leak amounts and location. The purpose of this paper is to present the recent achievements in the study of improved rarefaction-pressure wave detection techniques. The rarefaction-pressure wave detection methods, effects of incomplete information conditions, the improvements of rarefaction-pressure wave detection techniques with modified factors and propagation mechanisms are comprehensively investigated. The disfigurements of rarefaction-pressure wave are analyzed. The corresponding methods for resolving such problems as ill diagnostic information and weak amplitude values are put forward. Several methods for stronger small leakage detection ability, higher leakage positioning precision, lower false alarm rates are proposed. The application of rarefaction-pressure wave detection techniques to safety protection of liquid pipelines is also introduced. Finally, the prospect of rarefaction-pressure wave detection techniques is predicted.


Sign in / Sign up

Export Citation Format

Share Document