scholarly journals Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers

2021 ◽  
Vol 12 ◽  
Author(s):  
Michela Goffredo ◽  
Sanaz Pournajaf ◽  
Stefania Proietti ◽  
Annalisa Gison ◽  
Federico Posteraro ◽  
...  

Background: The efficacy of upper-limb Robot-assisted Therapy (ulRT) in stroke subjects is well-established. The robot-measured kinematic data can assess the biomechanical changes induced by ulRT and the progress of patient over time. However, literature on the analysis of pre-treatment kinematic parameters as predictive biomarkers of upper limb recovery is limited.Objective: The aim of this study was to calculate pre-treatment kinematic parameters from point-to-point reaching movements in different directions and to identify biomarkers of upper-limb motor recovery in subacute stroke subjects after ulRT.Methods: An observational retrospective study was conducted on 66 subacute stroke subjects who underwent ulRT with an end-effector robot. Kinematic parameters were calculated from the robot-measured trajectories during movements in different directions. A Generalized Linear Model (GLM) was applied considering the post-treatment Upper Limb Motricity Index and the kinematic parameters (from demanding directions of movement) as dependent variables, and the pre-treatment kinematic parameters as independent variables.Results: A subset of kinematic parameters significantly predicted the motor impairment after ulRT: the accuracy in adduction and internal rotation movements of the shoulder was the major predictor of post-treatment Upper Limb Motricity Index. The post-treatment kinematic parameters of the most demanding directions of movement significantly depended on the ability to execute elbow flexion-extension and abduction and external rotation movements of the shoulder at baseline.Conclusions: The multidirectional analysis of robot-measured kinematic data predicts motor recovery in subacute stroke survivors and paves the way in identifying subjects who may benefit more from ulRT.

2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Michela Goffredo ◽  
Stefano Mazzoleni ◽  
Annalisa Gison ◽  
Francesco Infarinato ◽  
Sanaz Pournajaf ◽  
...  

Background. Upper limb robot-assisted therapy (RT) provides intensive, repetitive, and task-specific treatment, and its efficacy for stroke survivors is well established in literature. Biomechanical data from robotic devices has been widely employed for patient’s assessment, but rarely it has been analysed for tracking patient progress during RT. The goal of this retrospective study is to analyse built-in kinematic data registered by a planar end-effector robot for assessing the time course of motor recovery and patient’s workspace exploration skills. A comparison of subjects having mild and severe motor impairment has been also conducted. For that purpose, kinematic data recorded by a planar end-effector robot have been processed for investigating how motor performance in executing point-to-point trajectories with different directions changes during RT.Methods. Observational retrospective study of 68 subacute stroke patients who conducted 20 daily sessions of upper limb RT with the InMotion 2.0 (Bionik Laboratories, USA): planar point-to-point reaching tasks with an “assist as needed” strategy. The following kinematic parameters (KPs) were computed for each subject and for each point-to-point trajectory executed during RT: movement accuracy, movement speed, number of peak speed, and task completion time. The Wilcoxon signed-rank tests were used with clinical outcomes. the Friedman test and post hoc Conover’s test (Bonferroni’s correction) were applied to KPs. A secondary data analysis has been conducted by comparing patients having different severities of motor impairment. The level of significance was set atpvalue < 0.05.Results. At the RT onset, the movements were less accurate and smoothed, and showed higher times of execution than those executed at the end of treatment. The analysis of the time course of KPs highlighted that RT seems to improve the motor function mainly in the first sessions of treatment: most KPs show significant intersession differences during the first 5/10 sessions. Afterwards, no further significant variations occurred. The ability to perform movements away from the body and from the hemiparetic side remains more challenging. The results obtained from the data stratification show significant differences between subjects with mild and severe motor impairment.Conclusion. Significant improvements in motor performance were registered during the time course of upper limb RT in subacute stroke patients. The outcomes depend on movement direction and motor impairment and pave the way to optimize healthcare resources and to design patient-tailored rehabilitative protocols.


Author(s):  
Ophélie Pila ◽  
Typhaine Koeppel ◽  
Anne-Gaëlle Grosmaire ◽  
Christophe DURET

Background: Upper-limb robot-mediated therapy is usually carried out in active-assisted mode because it enables performance of many movements. However, assistance may reduce the patient’s own efforts which could limit motor recovery. Objective: The aim of this study was to compare the effects of active-assisted and active-unassisted robotic interactions on motor recovery in subacute stroke patients with moderate hemiparesis. Methods: Fourteen patients underwent a 6-week combined upper limb program of usual therapy and robotic therapy using either the active-unassisted (n = 8) or active-assisted (n = 6) modes. In the active-assisted group, assistance was only provided for the first 3 weeks (1st period) and was then switched off for the remaining 3 weeks (2nd period). The Fugl-Meyer Assessment (FMA) was carried out pre- and post-treatment. The mean number of movements performed and the mean working distance during the 1st and 2nd periods were compared between groups. Results: FMA score improved post-treatment in both groups with no between-group differences: active-assisted group: +8±6 pts vs active-unassisted group: +10±6 pts (ns). Between the 1st and 2nd periods, there was a statistical trend towards an improvement in the number of movements performed (p = 0.06) in the active-unassisted group (526±253 to 783±434, p = 0.06) but not in the active-assisted group (882±211 to 880±297, ns). Another trend of improvement was found for the working distance in the active-unassisted group (8.7±4.5 to 9.9±4.7, p = 0.09) but not in the active-assisted group (14.0±0 to 13.5±1.1, ns). Conclusions: The superiority of the non-assistive over assistive robotic modes has not been demonstrated. However, the non-assistive mode did not appear to reduce motor recovery in this population, despite the performance of fewer movements on shorter working distance compared with the group who had assistance. It seems that the requirement of effort could be a determinant factor for recovery in neurorehabilitation however further well-design studies are needed to fully understand this phenomenon.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


Robotica ◽  
2014 ◽  
Vol 33 (1) ◽  
pp. 19-39 ◽  
Author(s):  
M. H. Rahman ◽  
M. J. Rahman ◽  
O. L. Cristobal ◽  
M. Saad ◽  
J. P. Kenné ◽  
...  

SUMMARYTo assist physically disabled people with impaired upper limb function, we have developed a new 7-DOF exoskeleton-type robot named Motion Assistive Robotic-Exoskeleton for Superior Extremity (ETS-MARSE) to ease daily upper limb movements and to provide effective rehabilitation therapy to the superior extremity. The ETS-MARSE comprises a shoulder motion support part, an elbow and forearm motion support part, and a wrist motion support part. It is designed to be worn on the lateral side of the upper limb in order to provide naturalistic movements of the shoulder (vertical and horizontal flexion/extension and internal/external rotation), elbow (flexion/extension), forearm (pronation/supination), and wrist joint (radial/ulnar deviation and flexion/extension). This paper focuses on the modeling, design, development, and control of the ETS-MARSE. Experiments were carried out with healthy male human subjects in whom trajectory tracking in the form of passive rehabilitation exercises (i.e., pre-programmed trajectories recommended by a therapist/clinician) were carried out. Experimental results show that the ETS-MARSE can efficiently perform passive rehabilitation therapy.


Author(s):  
Anne Schwarz ◽  
Janne M. Veerbeek ◽  
Jeremia P. O. Held ◽  
Jaap H. Buurke ◽  
Andreas R. Luft

Background: Deficits in interjoint coordination, such as the inability to move out of synergy, are frequent symptoms in stroke subjects with upper limb impairments that hinder them from regaining normal motor function. Kinematic measurements allow a fine-grained assessment of movement pathologies, thereby complementing clinical scales, like the Fugl–Meyer Motor Assessment of the Upper Extremity (FMMA-UE). The study goal was to investigate the effects of the performed task, the tested arm, the dominant affected hand, upper limb function, and age on spatiotemporal parameters of the elbow, shoulder, and trunk. The construct validity of the metrics was examined by relating them with each other, the FMMA-UE, and its arm section.Methods: This is a cross-sectional observational study including chronic stroke patients with mild to moderate upper limb motor impairment. Kinematic measurements were taken using a wearable sensor suit while performing four movements with both upper limbs: (1) isolated shoulder flexion, (2) pointing, (3) reach-to-grasp a glass, and (4) key insertion. The kinematic parameters included the joint ranges of shoulder abduction/adduction, shoulder flexion/extension, and elbow flexion/extension; trunk displacement; shoulder–elbow correlation coefficient; median slope; and curve efficiency. The effects of the task and tested arm on the metrics were investigated using a mixed-model analysis. The validity of metrics compared to clinically measured interjoint coordination (FMMA-UE) was done by correlation analysis.Results: Twenty-six subjects were included in the analysis. The movement task and tested arm showed significant effects (p &lt; 0.05) on all kinematic parameters. Hand dominance resulted in significant effects on shoulder flexion/extension and curve efficiency. The level of upper limb function showed influences on curve efficiency and the factor age on median slope. Relations with the FMMA-UE revealed the strongest and significant correlation for curve efficiency (r = 0.75), followed by shoulder flexion/extension (r = 0.68), elbow flexion/extension (r = 0.53), and shoulder abduction/adduction (r = 0.49). Curve efficiency additionally correlated significantly with the arm subsection, focusing on synergistic control (r = 0.59).Conclusion: The kinematic parameters of the upper limb after stroke were influenced largely by the task. These results underpin the necessity to assess different relevant functional movements close to real-world conditions rather than relying solely on clinical measures.Study Registration: clinicaltrials.gov, identifier NCT03135093 and BASEC-ID 2016-02075.


2021 ◽  
Author(s):  
◽  
E. G. Ibarra Zea

Currently, there are people worldwide with motor disabilities due to cerebrovascular diseases. To face this problem, people are subjected to physiotherapies to help them recover the motor mobility of the upper limb, but currently, it is not possible to meet the high demand of people who require it. This gave rise to the development and use of exoskeletons to meet the high demand of patients, however, the problem with the exoskeletons currently positioned in the market is that they do not adapt to the anthropometry of the Mexican population. In the present work, we present the design of an exoskeleton to assist physical therapists in the motor rehabilitation of the shoulder for the Mexican population over 18 years old. This exoskeleton can perform the three basic shoulder movements (abduction-adduction, flexion-extension and internal-external rotation) and an extra movement is considered in the elbow part which is flexion-extension. In addition, kinematic modelling is presented, and use is made of MATLAB® software to visualize the movements of each joint.


2013 ◽  
Vol 430 ◽  
pp. 203-207
Author(s):  
Mirela Toth-Taşcău ◽  
Flavia Bălănean ◽  
Dan Ioan Stoia

The paper presents a comparative study of the kinematic parameters of the upper limbs of one healthy subject and one patient with lateral distal humerus implant. This study aims to identify the movement patterns of the upper limb joints, having a particular interest in elbow joint, due to the patients pathology. Both subjects have been recorded in identical conditions, performing the same exercise what simulates one of the common daily activities. The kinematic parameters which have been analyzed were flexion-extension and abduction-adduction in shoulder joint and flexion-extension of the elbow joint. The joint angles have been averaged per each valid trial and exercise. The comparison of the joint angle variation was performed in terms of normalized time. Standard deviation was computed to evaluate the variability of joint angles. Movement symmetry between left and right arms was evaluated by computing the p-values of the averaged series.


Sign in / Sign up

Export Citation Format

Share Document