scholarly journals Cortical Networks of Creative Ability Trace Gene Expression Profiles of Synaptic Plasticity in the Human Brain

2021 ◽  
Vol 15 ◽  
Author(s):  
William Orwig ◽  
Ibai Diez ◽  
Elisenda Bueichekú ◽  
Patrizia Vannini ◽  
Roger Beaty ◽  
...  

The ability to produce novel ideas is central to societal progress and innovation; however, little is known about the biological basis of creativity. Here, we investigate the organization of brain networks that support creativity by combining functional neuroimaging data with gene expression information. Given the multifaceted nature of creative thinking, we hypothesized that distributed connectivity would not only be related to individual differences in creative ability, but also delineate the cortical distributions of genes involved in synaptic plasticity. We defined neuroimaging phenotypes using a graph theory approach that detects local and distributed network circuits, then characterized the spatial associations between functional connectivity and cortical gene expression distributions. Our findings reveal strong spatial correlations between connectivity maps and sets of genes devoted to synaptic assembly and signaling. This connectomic-transcriptome approach thus identifies gene expression profiles associated with high creative ability, linking cognitive flexibility to neural plasticity in the human brain.

Author(s):  
Joachim Petit ◽  
Nathalie Meurice ◽  
José Luis Medina-Franco ◽  
Gerald M. Maggiora

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Carl Grant Mangleburg ◽  
Timothy Wu ◽  
Hari K. Yalamanchili ◽  
Caiwei Guo ◽  
Yi-Chen Hsieh ◽  
...  

Abstract Background Tau neurofibrillary tangle pathology characterizes Alzheimer’s disease and other neurodegenerative tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have systematically examined both the transcriptome and proteome or differentiated Tau- versus age-dependent changes. Methods Paired, longitudinal RNA-sequencing and mass-spectrometry were performed in a Drosophila model of tauopathy, based on pan-neuronal expression of human wildtype Tau (TauWT) or a mutant form causing frontotemporal dementia (TauR406W). Tau-induced, differentially expressed transcripts and proteins were examined cross-sectionally or using linear regression and adjusting for age. Hierarchical clustering was performed to highlight network perturbations, and we examined overlaps with human brain gene expression profiles in tauopathy. Results TauWT induced 1514 and 213 differentially expressed transcripts and proteins, respectively. TauR406W had a substantially greater impact, causing changes in 5494 transcripts and 697 proteins. There was a ~ 70% overlap between age- and Tau-induced changes and our analyses reveal pervasive bi-directional interactions. Strikingly, 42% of Tau-induced transcripts were discordant in the proteome, showing opposite direction of change. Tau-responsive gene expression networks strongly implicate innate immune activation. Cross-species analyses pinpoint human brain gene perturbations specifically triggered by Tau pathology and/or aging, and further differentiate between disease amplifying and protective changes. Conclusions Our results comprise a powerful, cross-species functional genomics resource for tauopathy, revealing Tau-mediated disruption of gene expression, including dynamic, age-dependent interactions between the brain transcriptome and proteome.


PLoS ONE ◽  
2016 ◽  
Vol 11 (7) ◽  
pp. e0159395 ◽  
Author(s):  
Lei Chen ◽  
Chen Chu ◽  
Yu-Hang Zhang ◽  
Changming Zhu ◽  
Xiangyin Kong ◽  
...  

2020 ◽  
Author(s):  
Carl Grant Mangleburg ◽  
Timothy Wu ◽  
Hari K. Yalamanchili ◽  
Caiwei Guo ◽  
Yi-Chen Hsieh ◽  
...  

AbstractBackgroundTau neurofibrillary tangle pathology characterizes Alzheimer’s disease and other neurodegenerative tauopathies. Brain gene expression profiles can reveal mechanisms; however, few studies have systematically examined both the transcriptome and proteome or differentiated Tau- versus age-dependent changes.MethodsPaired, longitudinal RNA-sequencing and mass-spectrometry were performed in a Drosophila model of tauopathy, based on pan-neuronal expression of human wildtype Tau (TauWT) or a mutation causing frontotemporal dementia (TauR406W). Tau-induced, differentially expressed transcripts and proteins were examined cross-sectionally or using linear regression and adjusting for age. Hierarchical clustering was performed to highlight network perturbations, and we examined overlaps with human brain gene expression profiles in tauopathy.ResultsTauWT induced 1,514 and 213 differentially expressed transcripts and proteins, respectively. TauR406W had a substantially greater impact, causing changes in 5,494 transcripts and 697 proteins. There was a ~70% overlap between age- and Tau-induced changes and our analyses reveal pervasive bi-directional interactions. Strikingly, 42% of Tau-induced transcripts were discordant in the proteome, showing opposite direction of change. Tau-responsive gene expression networks strongly implicate innate immune activation, despite the absence of microglia in flies. Cross-species analyses pinpoint human brain gene perturbations specifically triggered by Tau pathology and/or aging, and further differentiate between disease amplifying and protective changes.ConclusionsOur results comprise a powerful, cross-species functional genomics resource for tauopathy, revealing Tau-mediated disruption of gene expression, including dynamic, age-dependent interactions between the brain transcriptome and proteome.


Methods ◽  
2015 ◽  
Vol 73 ◽  
pp. 54-70 ◽  
Author(s):  
Emma M. Myers ◽  
Christopher W. Bartlett ◽  
Raghu Machiraju ◽  
Jason W. Bohland

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1301 ◽  
Author(s):  
Sarah Logan ◽  
Thiago Arzua ◽  
Yasheng Yan ◽  
Congshan Jiang ◽  
Xiaojie Liu ◽  
...  

Background: The development of 3D cerebral organoid technology using human-induced pluripotent stem cells (iPSCs) provides a promising platform to study how brain diseases are appropriately modeled and treated. So far, understanding of the characteristics of organoids is still in its infancy. The current study profiled, for the first time, the electrophysiological properties of organoids at molecular and cellular levels and dissected the potential age equivalency of 2-month-old organoids to human ones by a comparison of gene expression profiles among cerebral organoids, human fetal and adult brains. Results: Cerebral organoids exhibit heterogeneous gene and protein markers of various brain cells, such as neurons, astrocytes, and vascular cells (endothelial cells and smooth muscle cells) at 2 months, and increases in neural, glial, vascular, and channel-related gene expression over a 2-month differentiation course. Two-month organoids exhibited action potentials, multiple channel activities, and functional electrophysiological responses to the anesthetic agent propofol. A bioinformatics analysis of 20,723 gene expression profiles showed the similar distance of gene profiles in cerebral organoids to fetal and adult brain tissues. The subsequent Ingenuity Pathway Analysis (IPA) of select canonical pathways related to neural development, network formation, and electrophysiological signaling, revealed that only calcium signaling, cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) signaling in neurons, glutamate receptor signaling, and synaptogenesis signaling were predicted to be downregulated in cerebral organoids relative to fetal samples. Nearly all cerebral organoid and fetal pathway phenotypes were predicted to be downregulated compared with adult tissue. Conclusions: This novel study highlights dynamic development, cellular heterogeneity and electrophysiological activity. In particular, for the first time, electrophysiological drug response recapitulates what occurs in vivo, and neural characteristics are predicted to be highly similar to the human brain, further supporting the promising application of the cerebral organoid system for the modeling of the human brain in health and disease. Additionally, the studies from these characterizations of cerebral organoids in multiple levels and the findings from gene comparisons between cerebral organoids and humans (fetuses and adults) help us better understand this cerebral organoid-based cutting-edge platform and its wide uses in modeling human brain in terms of health and disease, development, and testing drug efficacy and toxicity.


2017 ◽  
Vol 28 (9) ◽  
pp. 3267-3277 ◽  
Author(s):  
Jean Shin ◽  
Leon French ◽  
Ting Xu ◽  
Gabriel Leonard ◽  
Michel Perron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document