scholarly journals Solving the Credit Assignment Problem With the Prefrontal Cortex

2018 ◽  
Vol 12 ◽  
Author(s):  
Alexandra Stolyarova
Author(s):  
Jonathan E. Rubin ◽  
Catalina Vich ◽  
Matthew Clapp ◽  
Kendra Noneman ◽  
Timothy Verstynen

2006 ◽  
Vol 18 (2) ◽  
pp. 283-328 ◽  
Author(s):  
Randall C. O'Reilly ◽  
Michael J. Frank

The prefrontal cortex has long been thought to subserve both working memory (the holding of information online for processing) and executive functions (deciding how to manipulate working memory and perform processing). Although many computational models of working memory have been developed, the mechanistic basis of executive function remains elusive, often amounting to a homunculus. This article presents an attempt to deconstruct this homunculus through powerful learning mechanisms that allow a computational model of the prefrontal cortex to control both itself and other brain areas in a strategic, task-appropriate manner. These learning mechanisms are based on subcortical structures in the midbrain, basal ganglia, and amygdala, which together form an actor-critic architecture. The critic system learns which prefrontal representations are task relevant and trains the actor, which in turn provides a dynamic gating mechanism for controlling working memory updating. Computationally, the learning mechanism is designed to simultaneously solve the temporal and structural credit assignment problems. The model's performance compares favorably with standard backpropagation-based temporal learning mechanisms on the challenging 1-2-AX working memory task and other benchmark working memory tasks.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dong-Hyun Lim ◽  
Young Ju Yoon ◽  
Eunsil Her ◽  
Suehee Huh ◽  
Min Whan Jung

Abstract Even though persistent neural activity has been proposed as a mechanism for maintaining eligibility trace, direct empirical evidence for active maintenance of eligibility trace has been lacking. We recorded neuronal activity in the medial prefrontal cortex (mPFC) in rats performing a dynamic foraging task in which a choice must be remembered until its outcome on the timescale of seconds for correct credit assignment. We found that mPFC neurons maintain significant choice signals during the time period between action selection and choice outcome. We also found that neural signals for choice, outcome, and action value converge in the mPFC when choice outcome was revealed. Our results indicate that the mPFC maintains choice signals necessary for temporal credit assignment in the form of persistent neural activity in our task. They also suggest that the mPFC might update action value by combining actively maintained eligibility trace with action value and outcome signals.


Sign in / Sign up

Export Citation Format

Share Document