scholarly journals Spatial Patterns of Decreased Cerebral Blood Flow and Functional Connectivity in Multiple System Atrophy (Cerebellar-Type): A Combined Arterial Spin Labeling Perfusion and Resting State Functional Magnetic Resonance Imaging Study

2019 ◽  
Vol 13 ◽  
Author(s):  
Weimin Zheng ◽  
Shan Ren ◽  
Hao Zhang ◽  
Ming Liu ◽  
Qiuhuan Zhang ◽  
...  
2010 ◽  
Vol 30 (5) ◽  
pp. 913-922 ◽  
Author(s):  
Michael E Kelly ◽  
Christoph W Blau ◽  
Karen M Griffin ◽  
Oliviero L Gobbo ◽  
James FX Jones ◽  
...  

Blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is the most widely used method for mapping neural activity in the brain. The interpretation of altered BOLD signals is problematic when cerebral blood flow (CBF) or cerebral blood volume change because of aging and/or neurodegenerative diseases. In this study, a recently developed quantitative arterial spin labeling (ASL) approach, bolus-tracking ASL (btASL), was applied to an fMRI experiment in the rat brain. The mean transit time (MTT), capillary transit time (CTT), relative cerebral blood volume of labeled water (rCBVlw), relative cerebral blood flow (rCBF), and perfusion coefficient in the forelimb region of the somatosensory cortex were quantified during neuronal activation and in the resting state. The average MTT and CTT were 1.939±0.175 and 1.606±0.106 secs, respectively, in the resting state. Both times decreased significantly to 1.616±0.207 and 1.305±0.201 secs, respectively, during activation. The rCBVlw, rCBF, and perfusion coefficient increased on average by a factor of 1.123±0.006, 1.353±0.078, and 1.479±0.148, respectively, during activation. In contrast to BOLD techniques, btASL yields physiologically relevant indices of the functional hyperemia that accompanies neuronal activation.


Sign in / Sign up

Export Citation Format

Share Document