scholarly journals Commentary: Management of Intractable Pain in Patients With Implanted Spinal Cord Stimulation Devices During the COVID-19 Pandemic Using a Remote and Wireless Programming System

2021 ◽  
Vol 15 ◽  
Author(s):  
Alessandro Dario ◽  
Giovanni Frigerio
2020 ◽  
Vol 14 ◽  
Author(s):  
Yang Lu ◽  
Duo Xie ◽  
Xiaolei Zhang ◽  
Sheng Dong ◽  
Huifang Zhang ◽  
...  

As COVID-19 rampages throughout the world and has a major impact on the healthcare system, non-emergency medical procedures have nearly come to a halt due to appropriate resource reallocation. However, pain never stops, particularly for patients with chronic intractable pain and implanted spinal cord stimulation (SCS) devices. The isolation required to fight this pandemic makes it impossible for such patients to adjust the parameters or configuration of the device on site. Although telemedicine has shown a great effect in many healthcare scenarios, there have been fewer applications of such technology focusing on the interaction with implanted devices. Here, we introduce the first remote and wireless programming system that enables healthcare providers to perform video-based real-time programming and palliative medicine for pain patients with a SCS implant. During the COVID-19 pandemic from January 23, 2020, the date of lockdown of Wuhan, to April 30, 2020, 34 sessions of remote programming were conducted with 16 patients. Thirteen of the 16 patients required programming for parameter optimization. Improvement was achieved with programming adjustment in 12 of 13 (92.3%) cases. Eleven of the 16 (68.8%) patients reported that the system was user-friendly and met their needs. Five patients complained of an unstable connection resulting from the low network speed initially, and three of these patients solved this problem. In summary, we demonstrated that a remote wireless programming system can deliver safe and effective programming operations of implantable SCS device, thereby providing palliative care of value to the most vulnerable chronic pain patients during a pandemic.Clinical Trial Registrationwww.clinicaltrials.gov, identifier NCT 03858790.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Chiaki Yamada ◽  
Aiko Maeda ◽  
Katsuyuki Matsushita ◽  
Shoko Nakayama ◽  
Kazuhiro Shirozu ◽  
...  

Abstract Background Patients with spinal cord injury (SCI) frequently complain of intractable pain that is resistant to conservative treatments. Here, we report the successful application of 1-kHz high-frequency spinal cord stimulation (SCS) in a patient with refractory neuropathic pain secondary to SCI. Case presentation A 69-year-old male diagnosed with SCI (C4 American Spinal Injury Association Impairment Scale A) presented with severe at-level bilateral upper extremity neuropathic pain. Temporary improvement in his symptoms with a nerve block implied peripheral component involvement. The patient received SCS, and though the tip of the leads could not reach the cervical vertebrae, a 1-kHz frequency stimulus relieved the intractable pain. Conclusions SCI-related symptoms may include peripheral components; SCS may have a considerable effect on intractable pain. Even when the SCS electrode lead cannot be positioned in the target area, 1-kHz high-frequency SCS may still produce positive effects.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052110040
Author(s):  
Kuen Su Lee ◽  
Yoo Kyung Jang ◽  
Gene Hyun Park ◽  
In Jae Jun ◽  
Jae Chul Koh

Spinal cord stimulation (SCS) has been used to treat sustained pain that is intractable despite various types of treatment. However, conventional tonic waveform SCS has not shown promising outcomes for spinal cord injury (SCI) or postamputation pain. The pain signal mechanisms of burst waveforms are different to those of conventional tonic waveforms, but few reports have presented the therapeutic potential of burst waveforms for the abovementioned indications. This current case report describes two patients with refractory upper limb pain after SCI and upper limb amputation that were treated with burst waveform SCS. While the patients could not obtain sufficient therapeutic effect with conventional tonic waveforms, the burst waveforms provided better pain reduction with less discomfort. However, further studies are necessary to better clarify the mechanisms and efficacy of burst waveform SCS in patients with intractable pain.


1994 ◽  
Vol 26 (6) ◽  
pp. 347-351 ◽  
Author(s):  
Michele Gilbert ◽  
Colleen M. Counsell ◽  
Pam Martin ◽  
Christie Snively

2012 ◽  
Vol 16 (6) ◽  
pp. 530-536 ◽  
Author(s):  
John McAuley ◽  
Richard van Gröningen ◽  
Christopher Green

Neurosurgery ◽  
1993 ◽  
Vol 33 (5) ◽  
pp. 947
Author(s):  
Erik Van de Kelft ◽  
Christian De La Porte

Neurosurgery ◽  
2002 ◽  
Vol 50 (4) ◽  
pp. 690-704 ◽  
Author(s):  
Kenneth M. Aló ◽  
Jan Holsheimer

Abstract SINCE ITS FIRST application in 1967, the methodology and technology of spinal cord stimulation for the management of chronic, intractable pain have evolved continuously. Despite these developments and improved knowledge of the effects of spinal anatomy and epidural contact configuration on paresthesia coverage, the clinical results of spinal cord stimulation—particularly the long-term effects—are still unsatisfactory in many patients. This dissatisfaction has come primarily from the failure of single-electrode configurations to provide consistent paresthesia coverage of the entire painful area. Therefore, new approaches were developed during the late 1990s that attempted to selectively cover one or more dermatomes with paresthesia as well as to provide sequential stimulation of different anatomic sites. These approaches have been applied both intraspinally and extraspinally by stimulating either the spinal nerves or the dorsal columns. To target parts of the latter, different methods have been developed and tested using either two-dimensional contact configurations or electronic field steering. These developments hold promise for improving long-term outcomes as well as increasing the number of pain conditions that can be treated with neuromodulation therapy. In this review, the history, theoretical basis, and evolution of these methodologies, as well as the ways in which they represent new trends in neuromodulation, are discussed.


1994 ◽  
Vol 38 (03) ◽  
pp. 162
Author(s):  
R. B. NORTH ◽  
D. H. KIDD ◽  
M. ZAHURAK ◽  
C. S. JAMES ◽  
D. M. LONG

Sign in / Sign up

Export Citation Format

Share Document