scholarly journals Closing the Loop With Cortical Sensing: The Development of Adaptive Deep Brain Stimulation for Essential Tremor Using the Activa PC+S

2021 ◽  
Vol 15 ◽  
Author(s):  
Tomasz M. Fra̧czek ◽  
Benjamin I. Ferleger ◽  
Timothy E. Brown ◽  
Margaret C. Thompson ◽  
Andrew J. Haddock ◽  
...  

Deep Brain Stimulation (DBS) is an important tool in the treatment of pharmacologically resistant neurological movement disorders such as essential tremor (ET) and Parkinson's disease (PD). However, the open-loop design of current systems may be holding back the true potential of invasive neuromodulation. In the last decade we have seen an explosion of activity in the use of feedback to “close the loop” on neuromodulation in the form of adaptive DBS (aDBS) systems that can respond to the patient's therapeutic needs. In this paper we summarize the accomplishments of a 5-year study at the University of Washington in the use of neural feedback from an electrocorticography strip placed over the sensorimotor cortex. We document our progress from an initial proof of hardware all the way to a fully implanted adaptive stimulation system that leverages machine-learning approaches to simplify the programming process. In certain cases, our systems out-performed current open-loop approaches in both power consumption and symptom suppression. Throughout this effort, we collaborated with neuroethicists to capture patient experiences and take them into account whilst developing ethical aDBS approaches. Based on our results we identify several key areas for future work. “Graded” aDBS will allow the system to smoothly tune the stimulation level to symptom severity, and frequent automatic calibration of the algorithm will allow aDBS to adapt to the time-varying dynamics of the disease without additional input from a clinician. Additionally, robust computational models of the pathophysiology of ET will allow stimulation to be optimized to the nuances of an individual patient's symptoms. We also outline the unique advantages of using cortical electrodes for control and the remaining hardware limitations that need to be overcome to facilitate further development in this field. Over the course of this study we have verified the potential of fully-implanted, cortically driven aDBS as a feasibly translatable treatment for pharmacologically resistant ET.

2020 ◽  
Vol 12 (572) ◽  
pp. eaay7680
Author(s):  
Enrico Opri ◽  
Stephanie Cernera ◽  
Rene Molina ◽  
Robert S. Eisinger ◽  
Jackson N. Cagle ◽  
...  

Deep brain stimulation (DBS) is an approved therapy for the treatment of medically refractory and severe movement disorders. However, most existing neurostimulators can only apply continuous stimulation [open-loop DBS (OL-DBS)], ignoring patient behavior and environmental factors, which consequently leads to an inefficient therapy, thus limiting the therapeutic window. Here, we established the feasibility of a self-adjusting therapeutic DBS [closed-loop DBS (CL-DBS)], fully embedded in a chronic investigational neurostimulator (Activa PC + S), for three patients affected by essential tremor (ET) enrolled in a longitudinal (6 months) within-subject crossover protocol (DBS OFF, OL-DBS, and CL-DBS). Most patients with ET experience involuntary limb tremor during goal-directed movements, but not during rest. Hence, the proposed CL-DBS paradigm explored the efficacy of modulating the stimulation amplitude based on patient-specific motor behavior, suppressing the pathological tremor on-demand based on a cortical electrode detecting upper limb motor activity. Here, we demonstrated how the proposed stimulation paradigm was able to achieve clinical efficacy and tremor suppression comparable with OL-DBS in a range of movements (cup reaching, proximal and distal posture, water pouring, and writing) while having a consistent reduction in energy delivery. The proposed paradigm is an important step toward a behaviorally modulated fully embedded DBS system, capable of delivering stimulation only when needed, and potentially mitigating pitfalls of OL-DBS, such as DBS-induced side effects and premature device replacement.


2017 ◽  
Vol 127 (3) ◽  
pp. 580-587 ◽  
Author(s):  
Jeffrey A. Herron ◽  
Margaret C. Thompson ◽  
Timothy Brown ◽  
Howard J. Chizeck ◽  
Jeffrey G. Ojemann ◽  
...  

Deep brain stimulation (DBS) has become a widespread and valuable treatment for patients with movement disorders such as essential tremor (ET). However, current DBS treatment constantly delivers stimulation in an open loop, which can be inefficient. Closing the loop with sensors to provide feedback may increase power efficiency and reduce side effects for patients. New implantable neuromodulation platforms, such as the Medtronic Activa PC+S DBS system, offer important data sources by providing chronic neural sensing capabilities and a means of investigating dynamic stimulation based on symptom measurements. The authors implanted in a single patient with ET an Activa PC+S system, a cortical strip of electrodes on the hand sensorimotor cortex, and therapeutic electrodes in the ventral intermediate nucleus of the thalamus. In this paper they describe the effectiveness of the platform when sensing cortical movement intentions while the patient actually performed and imagined performing movements. Additionally, they demonstrate dynamic closed-loop DBS based on several wearable sensor measurements of tremor intensity.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145623 ◽  
Author(s):  
Masa-aki Higuchi ◽  
Dan D. Topiol ◽  
Bilal Ahmed ◽  
Hokuto Morita ◽  
Samuel Carbunaru ◽  
...  

2012 ◽  
Vol 90 (6) ◽  
pp. 394-400 ◽  
Author(s):  
Tatiana H. de Oliveira ◽  
Matthew R. Ginsberg ◽  
Scott Cooper ◽  
Amy Nowacki ◽  
Ali Rezai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document