scholarly journals Cross-Whisker Adaptation of Neurons in Layer 2/3 of the Rat Barrel Cortex

2021 ◽  
Vol 15 ◽  
Author(s):  
Yonatan Katz ◽  
Ilan Lampl

Neurons in the barrel cortex respond preferentially to stimulation of one principal whisker and weakly to several adjacent whiskers. Such integration exists already in layer 4, the pivotal recipient layer of thalamic inputs. Previous studies show that cortical neurons gradually adapt to repeated whisker stimulations and that layer 4 neurons exhibit whisker specific adaptation and no apparent interactions with other whiskers. This study aimed to study the specificity of adaptation of layer 2/3 cortical cells. Towards this aim, we compared the synaptic response of neurons to either repetitive stimulation of one of two responsive whiskers or when repetitive stimulation of the two whiskers was interleaved. We found that in most layer 2/3 cells adaptation is whisker-specific. These findings indicate that despite the multi-whisker receptive fields in the cortex, the adaptation process for each whisker-pathway is mostly independent of other whiskers. A mechanism allowing high responsiveness in complex environments.

1989 ◽  
Vol 62 (1) ◽  
pp. 288-308 ◽  
Author(s):  
H. A. Swadlow

1. The behavioral tractability of the rabbit was exploited and enabled, in the fully awake state, receptive-field analysis of antidromically identified efferent neurons within the vibrissa representation of primary somatosensory cortex (S-1). Efferent neurons studied included ipsilateral corticocortical neurons (C-IC neurons, n = 56) that project to or beyond the second somatosensory cortical area (S-2) and corticofugal neurons of layer 5 (CF-5 neurons, n = 75) and layer 6 (CF-6 neurons, n = 92) that project to and/or beyond the thalamus. 2. An additional class of neurons was studied that was not activated antidromically from any stimulus site, but which responded synaptically to electrical stimulation of the ventrobasal (VB) thalamus with a burst of three or more spikes at frequencies of 600 to greater than 900 Hz. Most of these neurons also responded synaptically to stimulation of S-2. The action potentials of these neurons were much shorter (mean = 0.43 ms), than those of efferent neurons (mean = 0.98 ms). Such properties have been associated with interneurons found throughout the central nervous system, and these neurons are thereby referred to as suspected interneurons (SINs). Although SINs were found at all cortical depths, a strong peak in the distribution occurred just superficial to the peak in the distribution of CF-5 neurons. Most SINs located within this peak responded to deflection of only a single vibrissa. In contrast, SINs located in layer 6 and in layer 2-3 responded to deflection of many vibrissae (median = 11.0 and 5.5 vibrissae, respectively). In addition, SINs of layer 6 and layer 2-3 had significantly longer synaptic latencies to stimulation of VB thalamus than did SINs located at intermediate cortical depths. 3. The properties of efferent neurons and SINs differed considerably. Efferent neurons never responded to stimulation of VB thalamus with the high-frequency burst of spikes characteristic of SINs. Although greater than 70% of CF-6, CF-5 and C-IC neurons had receptive fields that were directionally selective, only 20% of SINs showed any degree of directional selectivity. Furthermore, SINs showed both much lower angular thresholds to vibrissa deflection and a much greater ability to follow high-stimulus frequencies than was seen in efferent neurons. The spontaneous firing rates of SINs had a mean value of 16.5 spikes/s, which was the highest seen in any population within S-1. 4. CF-5 neurons had a number of properties which contrasted with those of both CF-6 and C-IC neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


2019 ◽  
Author(s):  
Matthew M. Tran ◽  
Luke Y. Prince ◽  
Dorian Gray ◽  
Lydia Saad ◽  
Helen Chasiotis ◽  
...  

AbstractPopulations of neurons in the neocortex can carry information with both the synchrony and the rate of their spikes. However, it is unknown whether distinct subtypes of neurons in the cortical microcircuit are more sensitive to information carried by synchrony versus rate. Here, we address this question using patterned optical stimulation in slices of barrel cortex from transgenic mouse lines labelling distinct interneuron populations: fast-spiking parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons. We use optical stimulation of channelrhodopsin-2 (ChR2) expressing excitatory neurons in layer 2/3 in order to encode a random 1-bit signal in either the synchrony or rate of activity in presynaptic cells. We then examine the mutual information between this 1-bit signal and the voltage and spiking responses in PV+ and SST+ interneurons. Generally, we find that both interneuron types carry more information than GFP negative (GFP-) control cells. More specifically, we find that for a synchrony encoding, PV+ interneurons carry more information in the first 5 milliseconds, while both interneuron subtypes carry more information than negative controls in their later response. We also find that for a rate encoding, SST+ interneurons carry more information than either PV+ or negative controls after several milliseconds. These data demonstrate that inhibitory interneuron subtypes in the neocortex have distinct responses to information carried by synchrony versus rates of spiking.


2020 ◽  
Author(s):  
G Dobrzanski ◽  
A Lukomska ◽  
R Zakrzewska ◽  
A Posluszny ◽  
D Kanigowski ◽  
...  

ABSTRACTLearning-related plasticity in the cerebral cortex is linked to the action of disinhibitory circuits of interneurons. Pavlovian conditioning, in which stimulation of the vibrissae is used as conditioned stimulus, induces plastic enlargement of the cortical functional representation of vibrissae activated during conditioning, visualized with [14C]-2-deoxyglucose (2DG). Using layer-specific, cell-selective DREADD transductions, we examined the involvement of somatostatin- (SOM-INs) and vasoactive intestinal peptide (VIP-INs)-containing interneurons in the development of learning-related plastic changes. We injected DREADD-expressing vectors into layer IV (L4) barrels or layer II/III (L2/3) areas corresponding to activated vibrissae. The activity of interneurons was modulated during training, and 2DG maps were obtained 24 h later. In mice with L4 but not L2/3 SOM-INs suppressed during conditioning, the plastic change of whisker representation and the conditioned reaction were absent. No effect of inhibiting VIP-INs was found. We report that the activity of L4 SOM-INs is indispensable for learning-induced plastic change.


2003 ◽  
Vol 23 (25) ◽  
pp. 8759-8770 ◽  
Author(s):  
Kevin J. Bender ◽  
Juliana Rangel ◽  
Daniel E. Feldman
Keyword(s):  
Layer 2 ◽  

2016 ◽  
Vol 115 (4) ◽  
pp. 2083-2094 ◽  
Author(s):  
Irakli Intskirveli ◽  
Anar Joshi ◽  
Bianca Julieta Vizcarra-Chacón ◽  
Raju Metherate

The GABAergic agonist muscimol is used to inactivate brain regions in order to reveal afferent inputs in isolation. However, muscimol's use in primary auditory cortex (A1) has been questioned on the grounds that it may unintentionally suppress thalamocortical inputs. We tested whether muscimol can preferentially suppress cortical, but not thalamocortical, circuits in urethane-anesthetized mice. We recorded tone-evoked current source density profiles to determine frequency receptive fields (RFs) for three current sinks: the “layer 4” sink (fastest onset, middle-layer sink) and current sinks 100 μm above (“layer 2/3”) and 300 μm below (“layer 5/6”) the main input. We first determined effects of muscimol dose (0.01–1 mM) on the characteristic frequency (CF) tone-evoked layer 4 sink. An “ideal” dose (100 μM) had no effect on CF-evoked sink onset latency or initial response but reduced peak amplitude by >80%, implying inhibition of intracortical, but not thalamocortical, activity. We extended the analysis to current sinks in layers 2/3 and 5/6 and for all three sinks determined RF breadth (quarter-octave steps, 20 dB above CF threshold). Muscimol reduced RF breadth 42% in layer 2/3 (from 2.4 ± 0.14 to 1.4 ± 0.11 octaves), 14% in layer 4 (2.2 ± 0.12 to 1.9 ± 0.10 octaves), and not at all in layer 5/6 (1.8 ± 0.10 to 1.7 ± 0.12 octaves). The results provide an estimate of the laminar and spectral extent of thalamocortical projections and support the hypothesis that intracortical pathways contribute to spectral integration in A1.


2005 ◽  
Vol 94 (1) ◽  
pp. 26-32 ◽  
Author(s):  
Jose-Manuel Alonso ◽  
Harvey A. Swadlow

A persistent and fundamental question in sensory cortical physiology concerns the manner in which receptive fields of layer-4 neurons are synthesized from their thalamic inputs. According to a hierarchical model proposed more than 40 years ago, simple receptive fields in layer 4 of primary visual cortex originate from the convergence of highly specific thalamocortical inputs (e.g., geniculate inputs with on-center receptive fields overlap the on subregions of layer 4 simple cells). Here, we summarize studies in the visual cortex that provide support for this high specificity of thalamic input to visual cortical simple cells. In addition, we review studies of GABAergic interneurons in the somatosensory “barrel” cortex with receptive fields that are generated by a very different mechanism: the nonspecific convergence of thalamic inputs with different response properties. We hypothesize that these 2 modes of thalamocortical connectivity onto subpopulations of excitatory and inhibitory neurons constitute a general feature of sensory neocortex and account for much of the diversity seen in layer-4 receptive fields.


2011 ◽  
Vol 105 (5) ◽  
pp. 2421-2437 ◽  
Author(s):  
Noah C. Roy ◽  
Thomas Bessaih ◽  
Diego Contreras

Cortical neurons are organized in columns, distinguishable by their physiological properties and input-output organization. Columns are thought to be the fundamental information-processing modules of the cortex. The barrel cortex of rats and mice is an attractive model system for the study of cortical columns, because each column is defined by a layer 4 (L4) structure called a barrel, which can be clearly visualized. A great deal of information has been collected regarding the connectivity of neurons in barrel cortex, but the nature of the input to a given L4 barrel remains unclear. We measured this input by making comprehensive maps of whisker-evoked activity in L4 of rat barrel cortex using recordings of multiunit activity and current source density analysis of local field potential recordings of animals under light isoflurane anesthesia. We found that a large number of whiskers evoked a detectable response in each barrel (mean of 13 suprathreshold, 18 subthreshold) even after cortical activity was abolished by application of muscimol, a GABAA agonist. We confirmed these findings with intracellular recordings and single-unit extracellular recordings in vivo. This constitutes the first direct confirmation of the hypothesis that subcortical mechanisms mediate a substantial multiwhisker input to a given cortical barrel.


2004 ◽  
Vol 91 (1) ◽  
pp. 223-229 ◽  
Author(s):  
Soo-Hyun Lee ◽  
Daniel J. Simons

Local circuitry within layer IV whisker-related barrels is preferentially sensitive to thalamic population firing synchrony, and neurons respond most vigorously to stimuli, such as high-velocity whisker deflections, that evoke it. Field potential recordings suggest that thalamic barreloid neurons having similar angular preferences fire synchronously. To examine whether angular tuning of cortical neurons might also be affected by thalamic firing synchrony, we characterized responses of layer IV units to whisker deflections that varied in angular direction and velocity. Barrel regular-spike units (RSUs) became more tuned for deflection angle with slower whisker movements. Deflection amplitude had no affect. Barrel fast-spike units (FSUs) were poorly tuned for deflection angle, and their responses remained constant with different deflection velocity. The dependence of angular tuning on deflection velocity among barrel RSUs appears to reflect the same underlying response dynamics that determine their velocity sensitivity and receptive field focus. Unexpectedly, septal RSUs and FSUs are largely similar to their barrel counterparts despite available evidence suggesting that they receive different afferent inputs and are embedded within different local circuits.


2016 ◽  
Author(s):  
Katayun Cohen-Kashi Malina ◽  
Boaz Mohar ◽  
Akiva N. Rappaport ◽  
Miao Liu

Thalamic inputs of layer 4 (L4) cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in L4 emerges due to synchronized thalamic activity. In order to investigate the role of both inputs in generation of cortical synchronization, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby L4 cells of the barrel cortex. In contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory evoked inputs. These results were further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential (LFP) in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling.


Sign in / Sign up

Export Citation Format

Share Document