scholarly journals [18F](2S,4R)-4-Fluoroglutamine as a New Positron Emission Tomography Tracer in Myeloma

2021 ◽  
Vol 11 ◽  
Author(s):  
Silvia Valtorta ◽  
Denise Toscani ◽  
Martina Chiu ◽  
Andrea Sartori ◽  
Angela Coliva ◽  
...  

The high glycolytic activity of multiple myeloma (MM) cells is the rationale for use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both bone marrow (BM) and extramedullary disease. However, new tracers are actively searched because [18F]FDG-PET has some limitations and there is a portion of MM patients who are negative. Glutamine (Gln) addiction has been recently described as a typical metabolic feature of MM cells. Yet, the possible exploitation of Gln as a PET tracer in MM has never been assessed so far and is investigated in this study in preclinical models. Firstly, we have synthesized enantiopure (2S,4R)-4-fluoroglutamine (4-FGln) and validated it as a Gln transport analogue in human MM cell lines, comparing its uptake with that of 3H-labelled Gln. We then radiosynthesized [18F]4-FGln, tested its uptake in two different in vivo murine MM models, and checked the effect of Bortezomib, a proteasome inhibitor currently used in the treatment of MM. Both [18F]4-FGln and [18F]FDG clearly identified the spleen as site of MM cell colonization in C57BL/6 mice, challenged with syngeneic Vk12598 cells and assessed by PET. NOD.SCID mice, subcutaneously injected with human MM JJN3 cells, showed high values of both [18F]4-FGln and [18F]FDG uptake. Bortezomib significantly reduced the uptake of both radiopharmaceuticals in comparison with vehicle at post treatment PET. However, a reduction of glutaminolytic, but not of glycolytic, tumor volume was evident in mice showing the highest response to Bortezomib. Our data indicate that [18F](2S,4R)-4-FGln is a new PET tracer in preclinical MM models, yielding a rationale to design studies in MM patients.

2007 ◽  
Vol 104 (23) ◽  
pp. 9800-9805 ◽  
Author(s):  
H. D. Burns ◽  
K. Van Laere ◽  
S. Sanabria-Bohorquez ◽  
T. G. Hamill ◽  
G. Bormans ◽  
...  

2011 ◽  
Vol 31 (11) ◽  
pp. 2169-2180 ◽  
Author(s):  
Christine DeLorenzo ◽  
J S Dileep Kumar ◽  
J John Mann ◽  
Ramin V Parsey

The metabotropic glutamate receptor subtype 5 (mGluR5) has been implicated in the pathophysiology of mood and anxiety disorders. Recently, a positron emission tomography (PET) tracer exhibiting high selectivity and specificity for mGluR5, 3-(6-methyl-pyridin-2-ylethynyl)-cyclohex-2-enone-O-11C-methyl-oxime ([11C]ABP688), was developed. In this work, eight healthy adult male humans were imaged twice to assess within-subject [11C]ABP688 binding variability using PET. In seven of the eight subjects, significantly higher binding was observed during the second (retest) scan. This binding increase could not be definitively explained by differences in ligand injected mass or dose, or changes in metabolism between scans. In addition, this type of systematic binding increase was not observed in a [11C]ABP688 test–retest study performed by our group on anaesthetized baboons. It is therefore possible that the increased binding was because of physiological changes occurring between scans, such as changes in endogenous glutamate levels. If PET imaging with [11C]ABP688 could detect such differences, as preliminary evidence suggests, it could be used to help uncover the role of glutamate in the pathophysiology of brain disorders. However, regardless of its ability to detect endogenous glutamate differences, [11C]ABP688 binding variability could make accurate assessments of drug occupancy or group differences using this ligand difficult.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5542-5542
Author(s):  
Nicola Giuliani ◽  
Silvia Valtorta ◽  
Martina Chiu ◽  
Denise Toscani ◽  
Andrea Sartori ◽  
...  

High glycolitic activity of multiple myeloma (MM) cells is the rationale for the use of Positron Emission Tomography (PET) with 18F-fluorodeoxyglucose ([18F]FDG) to detect both medullary and extramedullary disease. However, FDG-PET has some limitations, since there is a good portion of MM patients who are false-negative. Besides enhanced glycolysis, glutamine (Gln) addiction has been recently described as a metabolic feature of MM by our group. To sustain high Gln demand, MM cells increase the expression of several Gln transporters (ASCT2, SNAT1, LAT1) and are endowed with fast Gln uptake. Yet, at variance with other Gln-addicted cancers, the possible exploitation of Gln as a PET tracer in MM has never been assessed and was investigated in this study. To this purpose, we have firstly synthesized enantiopure (2S,4R)-4-Fluoroglutamine (4-FGln) and validated it as a Gln analogue in human MM cell lines (RPMI8226 and JJN3) comparing its uptake with that of 3H-labelled Gln. The intracellular levels of 4-FGln were determined by HPLC-MS/MS employing a HILIC gradient separation and multiple reaction monitoring (MRM) detection. Both Gln and 4-FGln were actively accumulated by MM cells and exhibited a strong reciprocal competition, pointing to shared transporters. Inhibition analysis revealed that ASCT2 was the major entry route of both compounds, with minor contributions from the other transporters. However, compared with Gln, 4-FGln exhibited higher affinity for both ASCT2 and LAT1 transporters. On the basis of these results, we then tested [18F]4-FGln uptake for MM detection by Positron Emission Tomography (PET) in two different in vivo murine models. Firstly, to investigate sensitivity of human MM to [18F]4-FGln in vivo, JJN3 cells were subcutaneously injected in immunodeficient NSG mice In this xenograft model, [18F]4-FGln- and[18F]FDG-PET scans were performed after plasmacytomas became palpable and repeated after one week. All the tumours were positive for [18F]FDG and displayed [18F]4-FGln uptake with Standard Uptake Values (SUV) of 1.21±1.9 and 0.99±0.07 after 2 weeks, respectively. Thereafter, the effect of bortezomib (BOR) was investigated to evaluate the potential use of [18F]4-FGln to monitor anti-MM treatment. Ten NGS mice were injected with JJN3 cells and, after 14 days, treated twice weekly with BOR, 1mg/kg, or vehicle for two weeks. PET scans were performed before and after 5 and 12 days of BOR treatment. As expected, BOR reduced tumour size as compared to vehicle. At the first post-BOR PET scan, [18F]4-FGln (SUV mean: pre 0.85±0.31; post 0.45±0.10, P<0.05), but not [18F]FDG (SUV mean: pre 0.97±0.38, post 0.75±0.14) was already significantly reduced: [18F]FDG and [18F]4-FGln uptake was reduced of 22 and 45% respectively. With both radiotracers, BOR treated animals displayed SUV mean values significantly lower than those of vehicle treated animals at post treatment PET (SUV means [18F ]FDG: BOR 0.75±0.14; vehicle 1.27±0.34, P<0.05; SUV mean [18F]4-FGln: BOR 0.45±0.10 ; vehicle: 0.73±0.18 ; P <0.05). Thereafter, to mimic BOR-resistant MM in a syngeneic mouse model, C57BL/6 mice were injected intravenously with Vk12598 cells obtained from transgenic Vk*MYC mice repeatedly treated with sub-optimal doses of BOR. Upon injection into C57BL/6 mice, Vk12598 cells colonize the BM without lytic lesions and extensively colonize the spleen generating an aggressive MM that brings animals to death within five weeks. PET scans were performed with [18F]4-FGln and [18F]FDG before Vk*MYC MM cells injection and after three, four and five weeks. Blood samples for M-spike evaluation were obtained in parallel. Four weeks after MM cells injection a significant increase of both [18F]4-FGln and [18F]FDG uptake was detected in spleens (SUV mean: 1.14±0.23, P=0.018; 0.94±0.24, P= 0.005). In both MM models, the volume of distribution of [18F]4-F-Gln did not overlap that of [18F]FDG. In conclusion, our data indicate that [18F]-(2S,4R)-4-Fluoroglutamine is a new potential PET tracer in pre-clinical MM models especially of extramedullary disease, either in a BOR-sensitive or in a BOR-resistant context, supporting the exploitation of Gln addiction for diagnostic purposes in MM patients. Disclosures Giuliani: Janssen: Research Funding.


2021 ◽  
Author(s):  
Olof Eriksson ◽  
Irina Velikyan ◽  
Torsten Haack ◽  
Martin Bossart ◽  
Andreas Evers ◽  
...  

Targeting of the Glucose-dependent Insulinotropic Polypeptide receptor GIPR is an emerging strategy in anti-diabetic drug development. The aim of this study was to develop a Positron Emission Tomography (PET) radioligand for the GIPR, to enable the assessment of target distribution and drug target engagement in vivo. <p>The GIPR selective peptide S02-GIP was radiolabeled with Gallium-68. The resulting PET tracer [<sup>68</sup>Ga]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [<sup>68</sup>Ga]S02-GIP-T4, as well as the occupancy of a drug candidate with GIPR activity, was assessed in non-human primates (NHP) by PET. </p> <p>[<sup>68</sup>Ga]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo pancreatic binding in NHP could be dose dependently inhibited by co-injection of unlabelled S02-GIP-T4. Finally, subcutaneous pre-treatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [<sup>68</sup>Ga]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [<sup>68</sup>Ga]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [<sup>68</sup>Ga]S02-GIP-T4 is a novel PET biomarker for safe, non-invasive, and quantitative assessment of GIPR target distribution and drug occupancy.</p>


2021 ◽  
Author(s):  
Olof Eriksson ◽  
Irina Velikyan ◽  
Torsten Haack ◽  
Martin Bossart ◽  
Andreas Evers ◽  
...  

Targeting of the Glucose-dependent Insulinotropic Polypeptide receptor GIPR is an emerging strategy in anti-diabetic drug development. The aim of this study was to develop a Positron Emission Tomography (PET) radioligand for the GIPR, to enable the assessment of target distribution and drug target engagement in vivo. <p>The GIPR selective peptide S02-GIP was radiolabeled with Gallium-68. The resulting PET tracer [<sup>68</sup>Ga]S02-GIP-T4 was evaluated for affinity and specificity to human GIPR (huGIPR). The in vivo GIPR binding of [<sup>68</sup>Ga]S02-GIP-T4, as well as the occupancy of a drug candidate with GIPR activity, was assessed in non-human primates (NHP) by PET. </p> <p>[<sup>68</sup>Ga]S02-GIP-T4 bound with nanomolar affinity and high selectivity to huGIPR in overexpressing cells. In vivo pancreatic binding in NHP could be dose dependently inhibited by co-injection of unlabelled S02-GIP-T4. Finally, subcutaneous pre-treatment with a high dose of a drug candidate with GIPR activity led to a decreased pancreatic binding of [<sup>68</sup>Ga]S02-GIP-T4, corresponding to a GIPR drug occupancy of almost 90%. [<sup>68</sup>Ga]S02-GIP-T4 demonstrated a safe dosimetric profile, allowing for repeated studies in humans. In conclusion, [<sup>68</sup>Ga]S02-GIP-T4 is a novel PET biomarker for safe, non-invasive, and quantitative assessment of GIPR target distribution and drug occupancy.</p>


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Carlos Velasco ◽  
Adriana Mota-Cobián ◽  
Jesús Mateo ◽  
Samuel España

Abstract Background Multi-tracer positron emission tomography (PET) imaging can be accomplished by applying multi-tracer compartment modeling. Recently, a method has been proposed in which the arterial input functions (AIFs) of the multi-tracer PET scan are explicitly derived. For that purpose, a gamma spectroscopic analysis is performed on blood samples manually withdrawn from the patient when at least one of the co-injected tracers is based on a non-pure positron emitter. Alternatively, these blood samples required for the spectroscopic analysis may be obtained and analyzed on site by an automated detection device, thus minimizing analysis time and radiation exposure of the operating personnel. In this work, a new automated blood sample detector based on silicon photomultipliers (SiPMs) for single- and multi-tracer PET imaging is presented, characterized, and tested in vitro and in vivo. Results The detector presented in this work stores and analyzes on-the-fly single and coincidence detected events. A sensitivity of 22.6 cps/(kBq/mL) and 1.7 cps/(kBq/mL) was obtained for single and coincidence events respectively. An energy resolution of 35% full-width-half-maximum (FWHM) at 511 keV and a minimum detectable activity of 0.30 ± 0.08 kBq/mL in single mode were obtained. The in vivo AIFs obtained with the detector show an excellent Pearson’s correlation (r = 0.996, p < 0.0001) with the ones obtained from well counter analysis of discrete blood samples. Moreover, in vitro experiments demonstrate the capability of the detector to apply the gamma spectroscopic analysis on a mixture of 68Ga and 18F and separate the individual signal emitted from each one. Conclusions Characterization and in vivo evaluation under realistic experimental conditions showed that the detector proposed in this work offers excellent sensibility and stability. The device also showed to successfully separate individual signals emitted from a mixture of radioisotopes. Therefore, the blood sample detector presented in this study allows fully automatic AIFs measurements during single- and multi-tracer PET studies.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Johannes Notni ◽  
Florian T. Gassert ◽  
Katja Steiger ◽  
Peter Sommer ◽  
Wilko Weichert ◽  
...  

Following publication of the original article [1], the authors have reported an error in the ‘Histopathology’ (under ‘Materials and methods’) section of the article that compromises the reproducibility of the paper.


Sign in / Sign up

Export Citation Format

Share Document