scholarly journals Ion Acoustic Peregrine Soliton Under Enhanced Dissipation

2021 ◽  
Vol 8 ◽  
Author(s):  
Pallabi Pathak

The effect of enhanced Landau damping on the evolution of ion acoustic Peregrine soliton in multicomponent plasma with negative ions has been investigated. The experiment is performed in a multidipole double plasma device. To enhance the ion Landau damping, the temperature of the ions is increased by applying a continuous sinusoidal signal of frequency close to the ion plasma frequency ∼1 MHz to the separation grid. The spatial damping rate of the ion acoustic wave is measured by interferometry. The damping rate of ion acoustic wave increases with the increase in voltage of the applied signal. At a higher damping rate, the Peregrine soliton ceases to show its characteristics leaving behind a continuous envelope.

1989 ◽  
Vol 41 (2) ◽  
pp. 243-255 ◽  
Author(s):  
Y. Nakamura ◽  
Joyanti Chutia

Reflection of ion-acoustic waves from the ion sheath in front of the separation grid in a double-plasma device has been investigated experimentally. The plasma potential φ of the source plasma was controlled relative to that of the target plasma. When eφ < κΤe, where Τe is the electron temperature, no reflection was observed. The reason for this is that ions are drifting towards the grid with the Bohm velocity, i.e. the ion-acoustic velocity. When eφ > κΤe the reflected wave consists of the ion-acoustic wave and the ion beam mode. The reflection coefficient for the ion-acoustic wave is about unity. This high efficiency is due to reflection of the ions themselves.


1993 ◽  
Vol 32 (8) ◽  
pp. 1465-1474 ◽  
Author(s):  
S. Chakraborty ◽  
A. Roy Chowdhury ◽  
S. N. Paul

2011 ◽  
Vol 18 (9) ◽  
pp. 092115 ◽  
Author(s):  
Kashif Arshad ◽  
S. Mahmood ◽  
Arshad M. Mirza

1975 ◽  
Vol 18 (6) ◽  
pp. 651 ◽  
Author(s):  
Masaharu Nakamura ◽  
Masataka Ito ◽  
Yoshiharu Nakamura ◽  
Tomizo Itoh

1997 ◽  
Vol 50 (2) ◽  
pp. 319 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roychowdhury

The dispersion relation of an ion-acoustic wave propagating through a collisionless, unmagnetised plasma, having warm isothermal electrons and cold positive and negative ions has been derived. It is seen that the ion-acoustic wave will be unstable in the presence of streaming of ions. Instability of the wave is graphically analysed for the plasma having (H+, O¯) ions, (H+, O2¯) ions, (H+, SF5¯) ions, (He+, Cl¯) ions and (Ar+, O¯) ions with different negative ion concentration and relativistic velocity.


1987 ◽  
Vol 38 (3) ◽  
pp. 461-471 ◽  
Author(s):  
Yoshiharu Nakamura

Propagation of nonlinear ion acoustic waves in a multi-component plasma with negative ions is investigated in a double-plasma device. When the density of negative ions is larger than a critical value, a broad negative pulse evolves to rarefactive solitons, and a positive pulse whose amplitude is less than a certain threshold value becomes a subsonic wave train. In the same plasma, a positive pulse whose amplitude is larger than the threshold develops into a solitary wave. The critical amplitude is measured as a function of the density of negative ions and compared with predictions of the pseudo-potential method. The energy distribution of electrons in the solitary wave is also measured.


2013 ◽  
Vol 02 (01) ◽  
pp. 15-25 ◽  
Author(s):  
APPN Editorial Office

It is well known that multicomponent plasma with negative ions supports a number of wave modes such as ion-acoustic solitons described by the Kortewege-de Vries (KdV) equation, modified KdV solitons at critical density of negative ions and ion-acoustic envelop solitons described by nonlinear Schrödinger equation (NLSE). The NLSE which is equivalent to the mKdV equation is applicable in describing evolution of ion-acoustic wave in plasma at critical density of negative ions which becomes modulationaly unstable when the nonlinear co-efficient is negative.


1986 ◽  
Vol 36 (2) ◽  
pp. 301-312 ◽  
Author(s):  
S. G. Tagare

Ion-acoustic solitons in a collisionless plasma with adiabatic positive and negative ions with equal ion temperature and isothermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced for the fast ion-acoustic wave to the Korteweg–de Vries and modified Korteweg–de Vries equation and for the slow ion-acoustic wave to the Korteweg–de Vries equation. Stationary solutions of these equations are obtained and the effect of ion temperature on fast and slow ion-acoustic solitons is investigated.


2014 ◽  
Vol 21 (7) ◽  
pp. 072303 ◽  
Author(s):  
Abhik Mukherjee ◽  
Anirban Bose ◽  
M. S. Janaki

Sign in / Sign up

Export Citation Format

Share Document