Ion-acoustic wave in relativistic nonisothermal plasma with negative ions

1993 ◽  
Vol 32 (8) ◽  
pp. 1465-1474 ◽  
Author(s):  
S. Chakraborty ◽  
A. Roy Chowdhury ◽  
S. N. Paul
2021 ◽  
Vol 8 ◽  
Author(s):  
Pallabi Pathak

The effect of enhanced Landau damping on the evolution of ion acoustic Peregrine soliton in multicomponent plasma with negative ions has been investigated. The experiment is performed in a multidipole double plasma device. To enhance the ion Landau damping, the temperature of the ions is increased by applying a continuous sinusoidal signal of frequency close to the ion plasma frequency ∼1 MHz to the separation grid. The spatial damping rate of the ion acoustic wave is measured by interferometry. The damping rate of ion acoustic wave increases with the increase in voltage of the applied signal. At a higher damping rate, the Peregrine soliton ceases to show its characteristics leaving behind a continuous envelope.


1997 ◽  
Vol 50 (2) ◽  
pp. 319 ◽  
Author(s):  
K. K. Mondal ◽  
S. N. Paul ◽  
A. Roychowdhury

The dispersion relation of an ion-acoustic wave propagating through a collisionless, unmagnetised plasma, having warm isothermal electrons and cold positive and negative ions has been derived. It is seen that the ion-acoustic wave will be unstable in the presence of streaming of ions. Instability of the wave is graphically analysed for the plasma having (H+, O¯) ions, (H+, O2¯) ions, (H+, SF5¯) ions, (He+, Cl¯) ions and (Ar+, O¯) ions with different negative ion concentration and relativistic velocity.


1986 ◽  
Vol 36 (2) ◽  
pp. 301-312 ◽  
Author(s):  
S. G. Tagare

Ion-acoustic solitons in a collisionless plasma with adiabatic positive and negative ions with equal ion temperature and isothermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced for the fast ion-acoustic wave to the Korteweg–de Vries and modified Korteweg–de Vries equation and for the slow ion-acoustic wave to the Korteweg–de Vries equation. Stationary solutions of these equations are obtained and the effect of ion temperature on fast and slow ion-acoustic solitons is investigated.


1979 ◽  
Vol 22 (1) ◽  
pp. 110 ◽  
Author(s):  
R. L. Watterson ◽  
A. L. Peratt ◽  
H. Derfler

2005 ◽  
Vol 73 (1) ◽  
pp. 87-97 ◽  
Author(s):  
U Deka ◽  
C B Dwivedi ◽  
H Ramachandran

Sign in / Sign up

Export Citation Format

Share Document