scholarly journals Coupling Parameters for Modeling the Near-Field Heat Transfer Between Molecules

2021 ◽  
Vol 9 ◽  
Author(s):  
Karthik Sasihithlu

The behavior of near-field heat transfer between molecules at gaps which are small compared to wavelength of light is greatly influenced by non-radiative dipole-dipole interactions between the molecules. Here we derive the coupling parameters and estimate the near-field heat transfer between two molecules using coupled Drude oscillators. The predictions from this model are verified with results from standard fluctuational electrodynamics principles. The effect of orientation factor of the dipole moments in the molecules traditionally taken into consideration for analysis of resonance energy transfer between molecules but hitherto overlooked for near-field heat transfer is also discussed.


2015 ◽  
Vol 184 ◽  
pp. 51-69 ◽  
Author(s):  
S. K. Sekatskii ◽  
K. Dukenbayev ◽  
M. Mensi ◽  
A. G. Mikhaylov ◽  
E. Rostova ◽  
...  

A few years ago, single molecule Fluorescence Resonance Energy Transfer Scanning Near-Field Optical Microscope (FRET SNOM) images were demonstrated using CdSe semiconductor nanocrystal–dye molecules as donor–acceptor pairs. Corresponding experiments reveal the necessity to exploit much more photostable fluorescent centers for such an imaging technique to become a practically used tool. Here we report the results of our experiments attempting to use nitrogen vacancy (NV) color centers in nanodiamond (ND) crystals, which are claimed to be extremely photostable, for FRET SNOM. All attempts were unsuccessful, and as a plausible explanation we propose the absence (instability) of NV centers lying close enough to the ND border. We also report improvements in SNOM construction that are necessary for single molecule FRET SNOM imaging. In particular, we present the first topographical images of single strand DNA molecules obtained with fiber-based SNOM. The prospects of using rare earth ions in crystals, which are known to be extremely photostable, for single molecule FRET SNOM at room temperature and quantum informatics at liquid helium temperatures, where FRET is a coherent process, are also discussed.







2020 ◽  
Vol 12 (46) ◽  
pp. 5532-5550
Author(s):  
Amrita Kaur ◽  
Pardeep Kaur ◽  
Sahil Ahuja

FRET is a nonradiative process of energy transfer that is based on the dipole–dipole interactions between molecules that are fluorescent.



Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 4021-4031 ◽  
Author(s):  
Maria Sanz-Paz ◽  
Jerome Wenger ◽  
Niek F. van Hulst ◽  
Mathieu Mivelle ◽  
Maria F. Garcia-Parajo

AbstractFörster Resonance Energy Transfer (FRET) is a widely applied technique in biology to accurately measure intra- and inter-molecular interactions at the nanometre scale. FRET is based on near-field energy transfer from an excited donor to a ground state acceptor emitter. Photonic nanoantennas have been shown to modify the rate, efficiency and extent of FRET, a process that is highly dependent on the near-field gradient of the antenna field as felt by the emitters, and thus, on their relative distance. However, most of the experiments reported to date focus on fixed antennas where the emitters are either immobilized or diffusing in solution, so that the distance between the antenna and the emitters cannot be manipulated. Here, we use scanning photonic nanoantenna probes to directly modulate the FRET efficiency between individual FRET pairs with an unprecedented nanometric lateral precision of 2 nm on the antenna position. We find that the antenna acts as an independent acceptor element, competing with the FRET pair acceptor. We directly map the competition between FRET and donor-antenna transfer as a function of the relative position between the antenna and the FRET donor-acceptor pair. The experimental data are well-described by FDTD simulations, confirming that the modulation of FRET efficiency is due to the spatially dependent coupling of the single FRET pair to the photonic antenna.



Sign in / Sign up

Export Citation Format

Share Document