scholarly journals Tunable Topological Surface States of Three-Dimensional Acoustic Crystals

2021 ◽  
Vol 9 ◽  
Author(s):  
Hua-Shan Lai ◽  
Yu-Li Xu ◽  
Bo He ◽  
Xiao-Chen Sun ◽  
Cheng He ◽  
...  

Topological design for band structures of artificial materials such as acoustic crystals provides a powerful tool to manipulate wave propagating in a robust and symmetry-protected way. In this paper, based on the band folding and breaking mechanism by building blocks with acoustic atoms, we construct a three-dimensional topological acoustic crystal with a large complete bandgap. At a mirror-symmetry domain wall, two gapped symmetry and anti-symmetry surface states can be found in the bandgap, originated from two opposite Su-Schrieffer-Heeger chains. Remarkably, by enforcing a glide symmetry on the domain wall, we can tune the original gapped surface states in a gapless fashion at the boundaries of surface Brillouin zone, acting as omnidirectional acoustic quantum spin Hall effect. Our tunable yet straightforward acoustic crystals offer promising potentials in realizing future topological acoustic devices.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
I. Marković ◽  
C. A. Hooley ◽  
O. J. Clark ◽  
F. Mazzola ◽  
M. D. Watson ◽  
...  

AbstractBand inversions are key to stabilising a variety of novel electronic states in solids, from topological surface states to the formation of symmetry-protected three-dimensional Dirac and Weyl points and nodal-line semimetals. Here, we create a band inversion not of bulk states, but rather between manifolds of surface states. We realise this by aliovalent substitution of Nb for Zr and Sb for S in the ZrSiS family of nonsymmorphic semimetals. Using angle-resolved photoemission and density-functional theory, we show how two pairs of surface states, known from ZrSiS, are driven to intersect each other near the Fermi level in NbGeSb, and to develop pronounced spin splittings. We demonstrate how mirror symmetry leads to protected crossing points in the resulting spin-orbital entangled surface band structure, thereby stabilising surface state analogues of three-dimensional Weyl points. More generally, our observations suggest new opportunities for engineering topologically and symmetry-protected states via band inversions of surface states.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiujuan Zhang ◽  
Zhi-Kang Lin ◽  
Hai-Xiao Wang ◽  
Zhan Xiong ◽  
Yuan Tian ◽  
...  

AbstractSymmetry and topology are two fundamental aspects of many quantum states of matter. Recently new topological materials, higher-order topological insulators, were discovered, featuring bulk–edge–corner correspondence that goes beyond the conventional topological paradigms. Here we discover experimentally that the nonsymmorphic p4g acoustic metacrystals host a symmetry-protected hierarchy of topological multipoles: the lowest band gap has a quantized Wannier dipole and can mimic the quantum spin Hall effect, whereas the second band gap exhibits quadrupole topology with anomalous Wannier bands. Such a topological hierarchy allows us to observe experimentally distinct, multiplexed topological phenomena and to reveal a topological transition triggered by the geometry transition from the p4g group to the C4v group, which demonstrates elegantly the fundamental interplay between symmetry and topology. Our study demonstrates that classical systems with controllable geometry can serve as powerful simulators for the discovery of novel topological states of matter and their phase transitions.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Yizhou Liu ◽  
Yong Xu ◽  
Wenhui Duan

Efficient control of phonons is crucial to energy-information technology, but limited by the lacking of tunable degrees of freedom like charge or spin. Here we suggest to utilize crystalline symmetry-protected pseudospins as new quantum degrees of freedom to manipulate phonons. Remarkably, we reveal a duality between phonon pseudospins and electron spins by presenting Kramers-like degeneracy and pseudospin counterparts of spin-orbit coupling, which lays the foundation for “pseudospin phononics”. Furthermore, we report two types of three-dimensional phononic topological insulators, which give topologically protected, gapless surface states with linear and quadratic band degeneracies, respectively. These topological surface states display unconventional phonon transport behaviors attributed to the unique pseudospin-momentum locking, which are useful for phononic circuits, transistors, antennas, etc. The emerging pseudospin physics offers new opportunities to develop future phononics.


SPIN ◽  
2019 ◽  
Vol 09 (04) ◽  
pp. 1940014
Author(s):  
Guyue Zhong ◽  
Q. Xie ◽  
Gang Xu

Based on first-principles calculations, we predict that the monolayer AuTe2Cl is a quantum spin Hall (QSH) insulator with a topological band gap about 10 meV. The three-dimensional (3D) AuTe2Cl is a topological semimetal that can be viewed as the monolayer stacking along [Formula: see text] axis. By studying the energy-level distribution of [Formula: see text] orbitals of Te atoms for the bulk and the monolayer, we find that the confinement effect driven [Formula: see text] band inversion is responsible for the topological nontrivial nature of monolayer. Since 3D bulk AuTe2Cl has already been experimentally synthesized, we expect that monolayer AuTe2Cl can be exfoliated from a bulk sample and the predicted QSH effect can be observed.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
C. H. Li ◽  
O.M.J. van ‘t Erve ◽  
S. Rajput ◽  
L. Li ◽  
B. T. Jonker

Abstract Three-dimensional topological insulators (TIs) exhibit time-reversal symmetry protected, linearly dispersing Dirac surface states with spin–momentum locking. Band bending at the TI surface may also lead to coexisting trivial two-dimensional electron gas (2DEG) states with parabolic energy dispersion. A bias current is expected to generate spin polarization in both systems, although with different magnitude and sign. Here we compare spin potentiometric measurements of bias current-generated spin polarization in Bi2Se3(111) where Dirac surface states coexist with trivial 2DEG states, and in InAs(001) where only trivial 2DEG states are present. We observe spin polarization arising from spin–momentum locking in both cases, with opposite signs of the measured spin voltage. We present a model based on spin dependent electrochemical potentials to directly derive the sign expected for the Dirac surface states, and show that the dominant contribution to the current-generated spin polarization in the TI is from the Dirac surface states.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 691
Author(s):  
Francisco-José Gallardo-Basile ◽  
Yannick Naunheim ◽  
Franz Roters ◽  
Martin Diehl

Lath martensite is a complex hierarchical compound structure that forms during rapid cooling of carbon steels from the austenitic phase. At the smallest, i.e., ‘single crystal’ scale, individual, elongated domains, form the elemental microstructural building blocks: the name-giving laths. Several laths of nearly identical crystallographic orientation are grouped together to blocks, in which–depending on the exact material characteristics–clearly distinguishable subblocks might be observed. Several blocks with the same habit plane together form a packet of which typically three to four together finally make up the former parent austenitic grain. Here, a fully parametrized approach is presented which converts an austenitic polycrystal representation into martensitic microstructures incorporating all these details. Two-dimensional (2D) and three-dimensional (3D) Representative Volume Elements (RVEs) are generated based on prior austenite microstructure reconstructed from a 2D experimental martensitic microstructure. The RVEs are used for high-resolution crystal plasticity simulations with a fast spectral method-based solver and a phenomenological constitutive description. The comparison of the results obtained from the 2D experimental microstructure and the 2D RVEs reveals a high quantitative agreement. The stress and strain distributions and their characteristics change significantly if 3D microstructures are used. Further simulations are conducted to systematically investigate the influence of microstructural parameters, such as lath aspect ratio, lath volume, subblock thickness, orientation scatter, and prior austenitic grain shape on the global and local mechanical behavior. These microstructural features happen to change the local mechanical behavior, whereas the average stress–strain response is not significantly altered. Correlations between the microstructure and the plastic behavior are established.


Sign in / Sign up

Export Citation Format

Share Document