scholarly journals Global Mean Sea Level. Time Trends and Persistence with Long Range Dependent Data

2021 ◽  
Vol 9 ◽  
Author(s):  
Luis Alberiko Gil-Alana

Global mean sea level data are examined in this work by looking at the presence of time trends in the context of long memory or long range dependent processes. By looking at both seasonal signals retained and seasonal signals removed data from 1992 to 2020, the results show that the two series display significant time trend coefficients and high levels of persistence.

2012 ◽  
Vol 39 (18) ◽  
Author(s):  
Don P. Chambers ◽  
Mark A. Merrifield ◽  
R. Steven Nerem

Author(s):  
R. Steven Nerem ◽  
Michaël Ablain ◽  
Anny Cazenave ◽  
John Church ◽  
Eric Leuliette

2021 ◽  
Author(s):  
Jacqueline Austermann ◽  
Mark Hoggard ◽  
Konstantin Latychev ◽  
Fred Richards ◽  
Jerry Mitrovica

It is generally agreed that the Last Interglacial (LIG; ~130-115ka) was a time when global average temperatures and global mean sea level were higher than they are today. However, the exact timing, magnitude, and spatial pattern of ice melt is much debated. One difficulty in extracting past global mean sea level from local observations is that their elevations need to be corrected for glacial isostatic adjustment (GIA), which requires knowledge of Earth’s internal viscoelastic structure. While this structure is generally assumed to be radially symmetric, evidence from seismology, geodynamics, and mineral physics indicates that large lateral variations in viscosity exist within the mantle. In this study, we construct a new model of Earth’s internal structure by converting shear wave speed into viscosity using parameterisations from mineral physics experiments and geodynamical constraints on Earth’s thermal structure. We use this 3D Earth structure, which includes both variations in lithospheric thickness and lateral variations in viscosity, to calculate the first 3D GIA prediction for LIG sea level. We find that the difference between predictions with and without lateral Earth structure can be meters to 10s of meters in the near field of former ice sheets, and up to a few meters in their far field. We demonstrate how forebulge dynamics and continental levering are affected by laterally varying Earth structure, with a particular focus on those sites with prominent LIG sea level records. Results from three 3D GIA calculations show that accounting for lateral structure acts to increase local sea level by up to ~1.5m at the Seychelles and minimally decrease it in Western Australia. We acknowledge that this result is only based on a few simulations, but if robust, this shift brings estimates of global mean sea level from these two sites into closer agreement with each other. We further demonstrate that simulations with a suitable radial viscosity profile can be used to locally approximate the 3D GIA result, but that these radial profiles cannot be found by simply averaging viscosity below the sea level indicator site.


2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Habib B. Dieng ◽  
Anny Cazenave ◽  
Benoit Meyssignac ◽  
Olivier Henry ◽  
Karina von Schuckmann ◽  
...  

AbstractInterannual fluctuations of the global mean sea level are highly correlated with El Niño-Southern Oscillation (ENSO) events, with positive/negative anomalies during El Niño/La Niña. In a previous study we showed that during the 1997 - 1998 El Niño, a positive anomaly observed in the global mean sea level was mostly caused by an increase of the ocean mass component rather than by steric (thermal) effects. This result was related to an increase of precipitation over the tropical ocean and a deficit in land water storage. In the present study, we investigate the effect of the recent 2008 and 2011 La Niña events on the satellite altimetry-based global mean sea level. We find that the large global mean sea level drop associated with the 2011 La Niña results from the combined decrease of the steric and ocean mass components, with a slightly dominant contribution from the latter. We show that the ocean mass contribution to the global mean sea level drop is spatially confined over the north eastern tropical Pacific (just as was found previously for the 1997 - 1998 El Niño, but with opposite sign). Corresponding ocean mass spatial pattern is closely correlated to observed sea level and steric spatial patterns over the duration of the La Niña event. This is also observed for previous El Niño and La Niña events. Such a drop in ocean mass during ENSO in the eastern part of the tropical Pacific has not been reported before. It is possibly related to a temporary decrease in the net precipitation over the north eastern Pacific (opposite situation was found during the 1997 - 1998 El Niño).


2013 ◽  
Vol 88 (4) ◽  
pp. 351-361 ◽  
Author(s):  
Olivier Henry ◽  
Michael Ablain ◽  
Benoit Meyssignac ◽  
Anny Cazenave ◽  
Dallas Masters ◽  
...  

2016 ◽  
Vol 121 (7) ◽  
pp. 4980-4993 ◽  
Author(s):  
B. D. Hamlington ◽  
P. Thompson ◽  
W. C. Hammond ◽  
G. Blewitt ◽  
R. D. Ray

Sign in / Sign up

Export Citation Format

Share Document