scholarly journals Forward Individualized Medicine from Personal Genomes to Interactomes

2015 ◽  
Vol 6 ◽  
Author(s):  
Xiang Zhang ◽  
Jan A. Kuivenhoven ◽  
Albert K. Groen
2020 ◽  
Vol 20 ◽  
Author(s):  
Ammad Ahmad Farooqi ◽  
Evangelia Legaki ◽  
Maria Gazouli ◽  
Silvia Rinaldi ◽  
Rossana Berardi

: Central dogma of molecular biology has remained cornerstone of classical molecular biology but serendipitous discovery of microRNAs (miRNAs) in nematodes paradigmatically shifted our current understanding of the intricate mech-anisms which occur during transitions from transcription to translation. Discovery of miRNA captured tremendous attention and appreciation and we had witnessed an explosion in the field of non-coding RNAs. Ground-breaking discoveries in the field of non-coding RNAs have helped in better characterization of microRNAs and long non-coding RNAs (LncRNAs). There is an ever-increasing list of miRNA targets which are regulated by MALAT1 to stimulate or repress expression of tar-get genes. However, in this review our main focus is to summarize mechanistic insights related to MALAT1-mediated regu-lation of oncogenic signaling pathways. We have discussed how MALAT1 modulated TGF/SMAD and Hippo pathways in various cancers. We have also comprehensively summarized how JAK/STAT and Wnt/β-catenin pathways stimulated MALAT1 expression and consequentially how MALAT1 potentiated these signaling cascades to promote cancer. MALAT1 research has undergone substantial broadening however, there is still a need to identify additional mechanisms. MALAT1 is involved in multi-layered regulation of multiple transduction cascades and detailed analysis of different pathways will be helpful in getting a step closer to individualized medicine.


Science ◽  
2011 ◽  
Vol 331 (6018) ◽  
pp. 690-690 ◽  
Author(s):  
J. Wang
Keyword(s):  

2016 ◽  
Vol 22 (2) ◽  
pp. 164-179 ◽  
Author(s):  
Maki S. Koyama ◽  
Adriana Di Martino ◽  
Francisco X. Castellanos ◽  
Erica J. Ho ◽  
Enitan Marcelle ◽  
...  

AbstractObjectives: Clinical neuroscience is increasingly turning to imaging the human brain for answers to a range of questions and challenges. To date, the majority of studies have focused on the neural basis of current psychiatric symptoms, which can facilitate the identification of neurobiological markers for diagnosis. However, the increasing availability and feasibility of using imaging modalities, such as diffusion imaging and resting-state fMRI, enable longitudinal mapping of brain development. This shift in the field is opening the possibility of identifying predictive markers of risk or prognosis, and also represents a critical missing element for efforts to promote personalized or individualized medicine in psychiatry (i.e., stratified psychiatry). Methods: The present work provides a selective review of potentially high-yield populations for longitudinal examination with MRI, based upon our understanding of risk from epidemiologic studies and initial MRI findings. Results: Our discussion is organized into three topic areas: (1) practical considerations for establishing temporal precedence in psychiatric research; (2) readiness of the field for conducting longitudinal MRI, particularly for neurodevelopmental questions; and (3) illustrations of high-yield populations and time windows for examination that can be used to rapidly generate meaningful and useful data. Particular emphasis is placed on the implementation of time-appropriate, developmentally informed longitudinal designs, capable of facilitating the identification of biomarkers predictive of risk and prognosis. Conclusions: Strategic longitudinal examination of the brain at-risk has the potential to bring the concepts of early intervention and prevention to psychiatry. (JINS, 2016, 22, 164–179)


Cephalalgia ◽  
2015 ◽  
Vol 36 (7) ◽  
pp. 624-639 ◽  
Author(s):  
Anne Francke Christensen ◽  
Ann-Louise Esserlind ◽  
Thomas Werge ◽  
Hreinn Stefánsson ◽  
Kári Stefánsson ◽  
...  

Objective Specific acute treatments of migraine are 5HT1B/D receptor agonists; triptans and ergotamine, but only two-thirds of patients respond well without side effects. No migraine-prophylactic drugs are specific to migraine. Prophylactic drugs are selected by time-consuming “trial and error.” Personalized treatment is therefore much needed. The objective of this study was to test the effect of 12 single nucleotide polymorphisms (SNPs) significantly associated with migraine on migraine drug responses. Methods Semi-structured migraine interviews including questions on drug responses, blood samples and genotyping were performed on 1806 unrelated migraine cases recruited from the Danish Headache Center. Association analyses were carried out using logistic regression, assuming an additive model for the genetic effect. The effect on drug responses was tested for a combined genetic score and for each of the 12 SNPs. Significant findings were subsequently tested in an independent replication sample of 392 unrelated Danish migraine cases. Results A single risk variant, rs2651899 in PRDM16, was significantly associated with efficacy of triptans with an odds ratio (OR) of treatment success of 1.3, and a higher combined genetic score was significantly associated with efficacy of triptans with an OR of success of up to 2.6. A number of SNPs showed nominal preferential association with the efficacy of triptans and others with prophylactic drugs. Analyses of triptans and ergotamine complemented each other and gave a stronger signal when analyzed together. The associations between response to triptans and genetic load and rs2651899 were partially confirmed in the independent sample. Conclusion We show for the first time an association between genetic constitution and migraine drug response. This is a first step toward future individualized medicine.


Sign in / Sign up

Export Citation Format

Share Document