scholarly journals Fractal Correlation Properties of Heart Rate Variability: A New Biomarker for Intensity Distribution in Endurance Exercise and Training Prescription?

2020 ◽  
Vol 11 ◽  
Author(s):  
Thomas Gronwald ◽  
Bruce Rogers ◽  
Olaf Hoos
2014 ◽  
Vol 9 (6) ◽  
pp. 1026-1032 ◽  
Author(s):  
Daniel J. Plews ◽  
Paul B. Laursen ◽  
Andrew E. Kilding ◽  
Martin Buchheit

Purpose:Elite endurance athletes may train in a polarized fashion, such that their training-intensity distribution preserves autonomic balance. However, field data supporting this are limited.Methods:The authors examined the relationship between heart-rate variability and training-intensity distribution in 9 elite rowers during the 26-wk build-up to the 2012 Olympic Games (2 won gold and 2 won bronze medals). Weekly averaged log-transformed square root of the mean sum of the squared differences between R-R intervals (Ln rMSSD) was examined, with respect to changes in total training time (TTT) and training time below the first lactate threshold (>LT1), above the second lactate threshold (LT2), and between LT1 and LT2 (LT1–LT2).Results:After substantial increases in training time in a particular training zone or load, standardized changes in Ln rMSSD were +0.13 (unclear) for TTT, +0.20 (51% chance increase) for time >LT1, –0.02 (trivial) for time LT1–LT2, and –0.20 (53% chance decrease) for time >LT2. Correlations (±90% confidence limits) for Ln rMSSD were small vs TTT (r = .37 ± .80), moderate vs time >LT1 (r = .43 ± .10), unclear vs LT1–LT2 (r = .01 ± .17), and small vs >LT2 (r = –.22 ± .50).Conclusion:These data provide supportive rationale for the polarized model of training, showing that training phases with increased time spent at high intensity suppress parasympathetic activity, while low-intensity training preserves and increases it. As such, periodized low-intensity training may be beneficial for optimal training programming.


2021 ◽  
Vol 3 ◽  
Author(s):  
Thomas Gronwald ◽  
Sander Berk ◽  
Marco Altini ◽  
Laurent Mourot ◽  
Olaf Hoos ◽  
...  

A non-linear heart rate variability (HRV) index based on fractal correlation properties called alpha1 of Detrended Fluctuation Analysis (DFA-alpha1), has been shown to change with endurance exercise intensity. Its unique advantage is that it provides information about current absolute exercise intensity without prior lactate or gas exchange testing. Therefore, real-time assessment of this metric during field conditions using a wearable monitoring device could directly provide a valuable exercise intensity distribution without prior laboratory testing for different applied field settings in endurance sports. Until of late no mobile based product could display DFA-alpha1 in real-time using off the shelf consumer products. Recently an app designed for iOS and Android devices, HRV Logger, was updated to assess DFA-alpha1 in real-time. This brief research report illustrates the potential merits of real-time monitoring of this metric for the purposes of aerobic threshold (AT) estimation and exercise intensity demarcation between low (zone 1) and moderate (zone 2) in a former Olympic triathlete. In a single-case feasibility study, three practically relevant scenarios were successfully evaluated in cycling, (1) estimation of a HRV threshold (HRVT) as an adequate proxy for AT using Kubios HRV software via a typical cycling stage test, (2) estimation of the HRVT during real-time monitoring using a cycling 6 min stage test, (3) a simulated 1 h training ride with enforcement of low intensity boundaries and real-time HRVT confirmation. This single-case field evaluation illustrates the potential of an easy-to-use and low cost real-time estimation of the aerobic threshold and exercise intensity distribution using fractal correlation properties of HRV. Furthermore, this approach may enhance the translation of science into endurance sports practice for future real-world settings.


2021 ◽  
Vol 38 (5) ◽  
pp. 343-349
Author(s):  
Ananda S. Cardoso ◽  
Guilherme P. Berriel ◽  
Pedro Schons ◽  
Rochelle R. Costa ◽  
Luiz Fernando M. Kruel

The aim of this research was to evaluate the behavior of vertical jumps performance in professional volleyball athletes during matches and training and their relationships with fatigue and recovery through heart rate variability (HRV), ratings of perceived exertion (RPE) and perceived recovery status (PRS). Nine male professional volleyball athletes participated in the study, with mean age: 25.66 ± 5.7 years, mean body mass: 97.81 ± 8.65 Kg and mean height: 200.94 ± 5.19 cm, with experience in national and international competitions. HRV and PRS were evaluated in the morning of matches and in the presentation for the first day of training after matches. RPE was collected immediately after matches and at the end of training days. Jumps performance was monitored during the matches and during the first days of training. The data was grouped by matches and training sessions. Significance level adopted was α ≤ 0.05. There were no alterations in HRV and PRS evaluated after matches and before training sessions, as well as in RPE after training. Jumps height was greater during the matches (p< 0.013) and there were no differences in the number of jumps. There was a positive correlation between the number of jumps during matches and PRS before matches (r= 0.336, p= 0.015) and a negative correlation between the number of jumps during training and pre-training PRS (r= -0.318, p= 0.002). We conclude that the recovery period proposed by the team proved to be sufficient for the athletes to maintain the same condition for returning to training. This information can assist physical trainers to prescribe training loads for the return to training.


Author(s):  
Rohan Edmonds ◽  
Julian Egan-Shuttler ◽  
Stephen J. Ives

Heart rate variability (HRV) is a reputable estimate of cardiac autonomic function used across multiple athletic populations to document the cardiac autonomic responses to sport demands. However, there is a knowledge gap of HRV responses in female youth rowers. Thus, the purpose of this study was to measure HRV weekly, over a 15-week training period, covering pre-season and up to competition in youth female rowers, in order to understand the physiological response to long-term training and discern how fluctuations in HRV may relate to performance in this population. Measures of heart rate and heart rate variability were recorded before training each Friday over the monitoring period in seven athletes. Analysis of heart rate variability focused on time domain indices, the standard deviation of all normal to normal R–R wave intervals, and the root mean square of successive differences as markers of cardiac parasympathetic modulation. Training load was quantified by multiplying the rating of perceived exertion of the weeks training and training duration. A decrease was identified in cardiac parasympathetic modulation as the season progressed (Effect Size (Cohen’s d) = −0.34 to −0.8, weeks 6 and 11–15), despite no significant relationship between training load and heart rate variability. Factors outside of training may further compound the reduction in heart rate variability, with further monitoring of external stressors (e.g., school) in adolescent athletes.


2017 ◽  
Vol 5 ◽  
Author(s):  
James N. Kirby ◽  
James R. Doty ◽  
Nicola Petrocchi ◽  
Paul Gilbert

Biofeedback ◽  
2013 ◽  
Vol 41 (1) ◽  
pp. 4-6 ◽  
Author(s):  
Fred Shaffer ◽  
Judy Crawford ◽  
Donald Moss

The Biofeedback Certification International Alliance (BCIA) has developed a certificate of completion program to establish education and training standards for the exciting modality of heart rate variability (HRV) biofeedback. HRV represents the beat-to-beat changes in the intervals between consecutive heartbeats. A growing list of HRV biofeedback applications has earned ratings from possibly efficacious to probably efficacious. BCIA's expert-designed Blueprint of Knowledge and exam promise to increase the academic rigor of didactic HRV biofeedback courses and enhance the knowledge of providers who incorporate this modality into their practice.


Sign in / Sign up

Export Citation Format

Share Document