scholarly journals Recovery behavior after matches for returning to training in volleyball athletes

2021 ◽  
Vol 38 (5) ◽  
pp. 343-349
Author(s):  
Ananda S. Cardoso ◽  
Guilherme P. Berriel ◽  
Pedro Schons ◽  
Rochelle R. Costa ◽  
Luiz Fernando M. Kruel

The aim of this research was to evaluate the behavior of vertical jumps performance in professional volleyball athletes during matches and training and their relationships with fatigue and recovery through heart rate variability (HRV), ratings of perceived exertion (RPE) and perceived recovery status (PRS). Nine male professional volleyball athletes participated in the study, with mean age: 25.66 ± 5.7 years, mean body mass: 97.81 ± 8.65 Kg and mean height: 200.94 ± 5.19 cm, with experience in national and international competitions. HRV and PRS were evaluated in the morning of matches and in the presentation for the first day of training after matches. RPE was collected immediately after matches and at the end of training days. Jumps performance was monitored during the matches and during the first days of training. The data was grouped by matches and training sessions. Significance level adopted was α ≤ 0.05. There were no alterations in HRV and PRS evaluated after matches and before training sessions, as well as in RPE after training. Jumps height was greater during the matches (p< 0.013) and there were no differences in the number of jumps. There was a positive correlation between the number of jumps during matches and PRS before matches (r= 0.336, p= 0.015) and a negative correlation between the number of jumps during training and pre-training PRS (r= -0.318, p= 0.002). We conclude that the recovery period proposed by the team proved to be sufficient for the athletes to maintain the same condition for returning to training. This information can assist physical trainers to prescribe training loads for the return to training.

Author(s):  
Rohan Edmonds ◽  
Julian Egan-Shuttler ◽  
Stephen J. Ives

Heart rate variability (HRV) is a reputable estimate of cardiac autonomic function used across multiple athletic populations to document the cardiac autonomic responses to sport demands. However, there is a knowledge gap of HRV responses in female youth rowers. Thus, the purpose of this study was to measure HRV weekly, over a 15-week training period, covering pre-season and up to competition in youth female rowers, in order to understand the physiological response to long-term training and discern how fluctuations in HRV may relate to performance in this population. Measures of heart rate and heart rate variability were recorded before training each Friday over the monitoring period in seven athletes. Analysis of heart rate variability focused on time domain indices, the standard deviation of all normal to normal R–R wave intervals, and the root mean square of successive differences as markers of cardiac parasympathetic modulation. Training load was quantified by multiplying the rating of perceived exertion of the weeks training and training duration. A decrease was identified in cardiac parasympathetic modulation as the season progressed (Effect Size (Cohen’s d) = −0.34 to −0.8, weeks 6 and 11–15), despite no significant relationship between training load and heart rate variability. Factors outside of training may further compound the reduction in heart rate variability, with further monitoring of external stressors (e.g., school) in adolescent athletes.


Author(s):  
Sara R. Sherman ◽  
Clifton J. Holmes ◽  
Alexander P. Demos ◽  
Tori Stone ◽  
Bjoern Hornikel ◽  
...  

Introduction: The parasympathetically derived marker of heart rate variability, root mean square of successive R-R differences (RMSSD), and the daily fluctuations as measured by the coefficient of variation (RMSSDCV) may be useful for tracking training adaptations in athletic populations. These vagally derived markers of heart rate variability may be especially pertinent when simultaneously considering a female athlete’s menstrual cycle. Purpose: The purpose of this study was to observe the perturbations in RMSSDCV, while considering RMSSD, across a season in the presence and absence of menses with training load in female collegiate rowers. Methods: Thirty-six (20 [1] y, 25.6 [3.4] kg·m−2) National Collegiate Athletic Association Division I female rowers were monitored for 18 consecutive weeks across a full season. Seated, ultrashortened RMSSD measurements were obtained by the rowers on at least 3 mornings per week using a smartphone photoplethysmography device. Following the RMSSD measurement, athletes indicated the presence or absence of menstruation within the application. Individual meters rowed that week and sessions rate of perceived exertion were obtained to quantify training load. Results: Longitudinal mixed-effects modeling demonstrated a significant effect of menses and time, while also considering RMSSD, such that those who were on their period had a significantly greater RMSSDCV than those who were not (11.2% vs 7.5%, respectively; P < .001). These changes were independent of meters rowed, sessions rate of perceived exertion, body mass index, birth-control use, and years of rowing experience, which were all nonsignificant predictors of RMSSDCgV (P > .05). Conclusion: The presence of menses appears to significantly impact RMSSDCV when also considering RMSSD, which may allow coaches to consider individualized training plans accordingly.


1999 ◽  
Vol 2 (1) ◽  
pp. 17-26
Author(s):  
Leon Straker ◽  
Carol Cain

A comparison between semi-squat and squat techniques was made for floor to knuckle height lifting using maximum acceptable weight (MAW), ratings of perceived exertion (RPE) and heart rate. Semi-squat lifting resulted in greater MAW with lower RPE and lower heart rate compared to squat lifting. Discomfort was most commonly reported in knees/quadriceps with squat lifting. Twelve of the 13 subjects preferred the semi-squat technique. The results provide evidence that the semi-squat technique may have benefits over the squat technique for lifting a medium sized box from floor to knuckle height.


2021 ◽  
Vol 6 (3) ◽  
pp. 66
Author(s):  
Tristan Tyrrell ◽  
Jessica Pavlock ◽  
Susan Bramwell ◽  
Cristina Cortis ◽  
Scott T. Doberstein ◽  
...  

Exercise prescription based on exercise test results is complicated by the need to downregulate the absolute training intensity to account for cardiovascular drift in order to achieve a desired internal training load. We tested a recently developed generalized model to perform this downregulation using metabolic equivalents (METs) during exercise testing and training. A total of 20 healthy volunteers performed an exercise test to define the METs at 60, 70, and 80% of the heart rate (HR) reserve and then performed randomly ordered 30 min training bouts at absolute intensities predicted by the model to achieve these levels of training intensity. The training HR at 60 and 70% HR reserve, but not 80%, was significantly less than predicted from the exercise test, although the differences were small. None of the ratings of perceived exertion (RPE) values during training were significantly different than predicted. There was a strong overall correlation between predicted and observed HR (r = 0.88) and RPE (r = 0.52), with 92% of HR values within ±10 bpm and 74% of RPE values within ±1 au. We conclude that the generalized functional translation model is generally adequate to allow the generation of early absolute training loads that lead to desired internal training loads.


2009 ◽  
Vol 23 (4) ◽  
pp. 1292-1299 ◽  
Author(s):  
Michelle Mielke ◽  
Terry J Housh ◽  
C Russell Hendrix ◽  
Clayton L Camic ◽  
Jorge M Zuniga ◽  
...  

2012 ◽  
Vol 8 (1) ◽  
pp. 41-46 ◽  
Author(s):  
H.C. Manso Filho ◽  
H.E.C.C.C. Manso ◽  
K.H. McKeever ◽  
S.R.R. Duarte ◽  
J.M.G. Abreu

In order to understand how gaited horses use their energy during exercise, a standardised field gaited test (SFGT) was developed to assess energy expenditure of four beat gaited horses independently of size, sex or breed. This work aimed at developing such an SFGT, using as main measurement parameter the heart rate (HR) of horses during the SFGT performance. Thirty-one four beat gaited horses were evaluated and divided into two groups: FIT (conditioned) and UNFIT (not conditioned). Horses were submitted to the SFGT and their heart rates were measured with a heart rate monitor as follows: right after being mounted, at the beginning of pre-test (HRSADDLE); at 5, 10, 15, 20, 25 and 30 minutes of four beat gait dislocation; and at 15 minutes after the recovery period (T+15). Maximum HR (HRMAX); HR percentage over 150 beats per minute (HR%≯150), HR percentage over 170 beats per minute (HR%≯170), and average HR during the four beat gait stage (HRM@M) of SFGT were calculated. Results were analysed by ANOVA for repeated measures. Where significant differences were observed, ‘T’ test was performed and significance was set at 5%. The FIT group presented HRMAX, HR+15, HRM@M, HR%≯150 and HR%≯170 rates lower (P<0.05) than the UNFIT group. It was noted that there was a negative correlation between fitness and HRMAX (R=−0.67; P<0.001) and a positive correlation between HRMAX and HR+15 (R=0.60; P<0.001) when comparing the FIT to the UNFIT horses. In conclusion, during the SFGT, the FIT group was more efficient in energy expenditure than the UNFIT group, based on the results observed for the significantly lower HRs during the SFGT. It is relevant to note that the SFGT developed and used in this research, which was easily reproduced and accurate, was able to detect and confirm important adaptations related to fitness in the athletic horse.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


Sign in / Sign up

Export Citation Format

Share Document