scholarly journals POD-Enhanced Deep Learning-Based Reduced Order Models for the Real-Time Simulation of Cardiac Electrophysiology in the Left Atrium

2021 ◽  
Vol 12 ◽  
Author(s):  
Stefania Fresca ◽  
Andrea Manzoni ◽  
Luca Dedè ◽  
Alfio Quarteroni

The numerical simulation of multiple scenarios easily becomes computationally prohibitive for cardiac electrophysiology (EP) problems if relying on usual high-fidelity, full order models (FOMs). Likewise, the use of traditional reduced order models (ROMs) for parametrized PDEs to speed up the solution of the aforementioned problems can be problematic. This is primarily due to the strong variability characterizing the solution set and to the nonlinear nature of the input-output maps that we intend to reconstruct numerically. To enhance ROM efficiency, we proposed a new generation of non-intrusive, nonlinear ROMs, based on deep learning (DL) algorithms, such as convolutional, feedforward, and autoencoder neural networks. In the proposed DL-ROM, both the nonlinear solution manifold and the nonlinear reduced dynamics used to model the system evolution on that manifold can be learnt in a non-intrusive way thanks to DL algorithms trained on a set of FOM snapshots. DL-ROMs were shown to be able to accurately capture complex front propagation processes, both in physiological and pathological cardiac EP, very rapidly once neural networks were trained, however, at the expense of huge training costs. In this study, we show that performing a prior dimensionality reduction on FOM snapshots through randomized proper orthogonal decomposition (POD) enables to speed up training times and to decrease networks complexity. Accuracy and efficiency of this strategy, which we refer to as POD-DL-ROM, are assessed in the context of cardiac EP on an idealized left atrium (LA) geometry and considering snapshots arising from a NURBS (non-uniform rational B-splines)-based isogeometric analysis (IGA) discretization. Once the ROMs have been trained, POD-DL-ROMs can efficiently solve both physiological and pathological cardiac EP problems, for any new scenario, in real-time, even in extremely challenging contexts such as those featuring circuit re-entries, that are among the factors triggering cardiac arrhythmias.

Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 259
Author(s):  
Stefania Fresca ◽  
Andrea Manzoni

Simulating fluid flows in different virtual scenarios is of key importance in engineering applications. However, high-fidelity, full-order models relying, e.g., on the finite element method, are unaffordable whenever fluid flows must be simulated in almost real-time. Reduced order models (ROMs) relying, e.g., on proper orthogonal decomposition (POD) provide reliable approximations to parameter-dependent fluid dynamics problems in rapid times. However, they might require expensive hyper-reduction strategies for handling parameterized nonlinear terms, and enriched reduced spaces (or Petrov–Galerkin projections) if a mixed velocity–pressure formulation is considered, possibly hampering the evaluation of reliable solutions in real-time. Dealing with fluid–structure interactions entails even greater difficulties. The proposed deep learning (DL)-based ROMs overcome all these limitations by learning, in a nonintrusive way, both the nonlinear trial manifold and the reduced dynamics. To do so, they rely on deep neural networks, after performing a former dimensionality reduction through POD, enhancing their training times substantially. The resulting POD-DL-ROMs are shown to provide accurate results in almost real-time for the flow around a cylinder benchmark, the fluid–structure interaction between an elastic beam attached to a fixed, rigid block and a laminar incompressible flow, and the blood flow in a cerebral aneurysm.


PLoS ONE ◽  
2020 ◽  
Vol 15 (10) ◽  
pp. e0239416
Author(s):  
Stefania Fresca ◽  
Andrea Manzoni ◽  
Luca Dedè ◽  
Alfio Quarteroni

Author(s):  
Genghui Jiang ◽  
Ming Kang ◽  
Zhenwei Cai ◽  
Yingzheng Liu ◽  
Weizhe Wang

2022 ◽  
Vol 6 (1) ◽  
Author(s):  
Marco Rossi ◽  
Sofia Vallecorsa

AbstractIn this work, we investigate different machine learning-based strategies for denoising raw simulation data from the ProtoDUNE experiment. The ProtoDUNE detector is hosted by CERN and it aims to test and calibrate the technologies for DUNE, a forthcoming experiment in neutrino physics. The reconstruction workchain consists of converting digital detector signals into physical high-level quantities. We address the first step in reconstruction, namely raw data denoising, leveraging deep learning algorithms. We design two architectures based on graph neural networks, aiming to enhance the receptive field of basic convolutional neural networks. We benchmark this approach against traditional algorithms implemented by the DUNE collaboration. We test the capabilities of graph neural network hardware accelerator setups to speed up training and inference processes.


2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoyue Xie ◽  
Yuan Ma ◽  
Bin Liu ◽  
Jinrong He ◽  
Shuqin Li ◽  
...  

IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 59069-59080 ◽  
Author(s):  
Peng Jiang ◽  
Yuehan Chen ◽  
Bin Liu ◽  
Dongjian He ◽  
Chunquan Liang

2007 ◽  
Vol 49 (3) ◽  
pp. 655-659
Author(s):  
Juan M. Cid ◽  
Jesús García ◽  
Javier Monge ◽  
Juan Zapata

Author(s):  
M A Isayev ◽  
D A Savelyev

The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.


Sign in / Sign up

Export Citation Format

Share Document