scholarly journals Localized Pulmonary Vein Scar Promotes Atrial Fibrillation in High Left Atrial Pressure

2021 ◽  
Vol 12 ◽  
Author(s):  
Lisa A. Gottlieb ◽  
Fanny Vaillant ◽  
Emma Abell ◽  
Charly Belterman ◽  
Virginie Loyer ◽  
...  

BackgroundPulmonary vein (PV) ablation is unsuccessful in atrial fibrillation (AF) patients with high left atrial (LA) pressure. Increased atrial stretch by increased pressure is proarrhythmic for AF, and myocardial scar alters wall deformation. We hypothesized that localized PV scar is proarrhythmic for AF in high LA pressure.MethodsRadiofrequency energy was delivered locally in the right PV of healthy sheep. The sheep recovered for 4 months. Explanted hearts (n = 9 PV scar, n = 9 controls) were perfused with 1:4 blood:Tyrode’s solution in a four-chamber working heart setup. Programmed PV stimulation was performed during low (∼12 mmHg) and high (∼25 mmHg) LA pressure. An AF inducibility index was calculated based on the number of induction attempts and the number of attempts causing AF (run of ≥ 20 premature atrial complexes).ResultsIn high LA pressure, the presence of PV scar increased the AF inducibility index compared with control hearts (0.83 ± 0.20 vs. 0.38 ± 0.40 arb. unit, respectively, p = 0.014). The diastolic stimulation threshold in high LA pressure was higher (108 ± 23 vs. 77 ± 16 mA, respectively, p = 0.006), and its heterogeneity was increased in hearts with PV scar compared with controls. In high LA pressure, the refractory period was shorter in PV scar than in control hearts (178 ± 39 vs. 235 ± 48 ms, p = 0.011).ConclusionLocalized PV scar only in combination with increased LA pressure facilitated the inducibility of AF. This was associated with changes in tissue excitability remote from the PV scar. Localized PV ablation is potentially proarrhythmic in patients with increased LA pressure.

2020 ◽  
Vol 11 ◽  
Author(s):  
Lohit Garg ◽  
Naga Venkata K. Pothineni ◽  
J. Michael Daw ◽  
Matthew C. Hyman ◽  
Jeffrey Arkles ◽  
...  

BackgroundFirst pass pulmonary vein isolation (PVI) is associated with durable isolation and reduced recurrence of atrial fibrillation (AF).ObjectiveWe sought to investigate the relationship between left atrial electrogram voltage using multielectrode fast automated mapping (ME-FAM) and first pass isolation with radiofrequency ablation.MethodsWe included consecutive patients (pts) undergoing first time ablation for paroxysmal AF (pAF), and compared the voltage characteristics between patients with and without first pass isolation. Left atrium (LA) adjacent to PVs was divided into 6 regions, and mean voltages obtained with ME-FAM (Pentaray, Biosense Webster) in each region and compared. LA electrograms with marked low voltage (<0.5 mV) were identified and the voltage characteristics at the site of difficult isolation was compared to the voltage in adjacent region.ResultsTwenty consecutive patients (10 with first pass and 10 without) with a mean age of 63.3 ± 6.2 years, 65% males, were studied. Difficult isolation occurred on the right PVs in eight pts and left PVs in three pts. The mean voltage in pts without first pass isolation was lower in all 6 regions; posterior wall (1.93 ± 1.46 versus 2.99 ± 2.19; p < 0.001), roof (1.83 ± 2.29 versus 2.47 ± 1.99; p < 0.001), LA-LPV posterior (1.85 ± 3.09 versus 2.99 ± 2.19, p < 0.001), LA-LPV ridge (1.42 ± 1.04 versus 1.91 ± 1.61; p < 0.001), LA-RPV posterior (1.51 ± 1.11 versus 2.30 ± 1.77, p < 0.001) and LA-RPV septum (1.55 ± 1.23 versus 2.31 ± 1.40, p < 0.001). Patients without first pass isolation also had a larger percentage of signal with an amplitude of <0.5 mV for each of the six regions (12.8% versus 7.5%). In addition, the mean voltage at the site of difficult isolation was lower at 8 out of 11 sites compared to mean voltage for remaining electrograms in that region.ConclusionIn patients undergoing PVI for paroxysmal AF, failure in first pass isolation was associated with lower global LA voltage, more marked low amplitude signal (<0.5 mV) and lower local signal voltage at the site with difficult isolation. The results suggest that a greater degree of global and segmental fibrosis may play a role in ease of PV isolation with radiofrequency energy.


Heart Rhythm ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. S126
Author(s):  
Ciro Ascione ◽  
Marco Bergonti ◽  
Valentina Catto, Stefania I. Riva ◽  
Massimo Moltrasio ◽  
Fabrizio Tundo ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yan-Jing Wang ◽  
Huan Sun ◽  
Xiao-Fei Fan ◽  
Meng-Chao Zhang ◽  
Ping Yang ◽  
...  

Abstract Background The ablation targets of atrial fibrillation (AF) are adjacent to bronchi and pulmonary arteries (PAs). We used computed tomography (CT) to evaluate the anatomical correlation between left atrium (LA)-pulmonary vein (PV) and adjacent structures. Methods Data were collected from 126 consecutive patients using coronary artery CT angiography. The LA roof was divided into three layers and nine points. The minimal spatial distances from the nine points and four PV orifices to the adjacent bronchi and PAs were measured. The distances from the PV orifices to the nearest contact points of the PVs, bronchi, and PAs were measured. Results The anterior points of the LA roof were farther to the bronchi than the middle or posterior points. The distances from the nine points to the PAs were shorter than those to the bronchi (5.19 ± 3.33 mm vs 8.62 ± 3.07 mm; P < .001). The bilateral superior PV orifices, especially the right superior PV orifices were closer to the PAs than the inferior PV orifices (left superior PV: 7.59 ± 4.14 mm; right superior PV: 4.43 ± 2.51 mm; left inferior PV: 24.74 ± 5.26 mm; right inferior PV: 22.33 ± 4.75 mm) (P < .001). Conclusions The right superior PV orifices were closer to the bronchi and PAs than other PV orifices. The ablation at the mid-posterior LA roof had a higher possibility to damage bronchi. CT is a feasible method to assess the anatomical adjacency in vivo, which might provide guidance for AF ablation.


2021 ◽  
Vol 33 ◽  
pp. 100730
Author(s):  
Sotirios Nedios ◽  
Soroosh Sanatkhani ◽  
Michael Oladosu ◽  
Timm Seewöster ◽  
Sergio Richter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document