scholarly journals The Effect and Dose-Response of Functional Electrical Stimulation Cycling Training on Spasticity in Individuals With Spinal Cord Injury: A Systematic Review With Meta-Analysis

2021 ◽  
Vol 12 ◽  
Author(s):  
Chia-Ying Fang ◽  
Angela Shin-Yu Lien ◽  
Jia-Ling Tsai ◽  
Hsiao-Chu Yang ◽  
Hsiao-Lung Chan ◽  
...  

Background: To investigate the effect and dose-response of functional electrical stimulation cycling (FES-cycling) training on spasticity in the individuals with spinal cord injury (SCI).Method: Five electronic databases [PubMed, Scopus, Medline (Proquest), Embase, and Cochrane Central Register of Controlled Trials (CENTRAL)] were searched before September 2021. The human trials and studies of English language were only included. Two authors independently reviewed and extracted the searched studies. The primary outcome measure was spasticity assessed by Modified Ashworth Scale or Ashworth Scale for lower limbs. The secondary outcome measures were walking abilities, such as 6 Min Walk Test (6MWT), Timed Up and Go (TUG), and lower limbs muscle strength (LEMS). A subgroup analysis was performed to investigate the efficacious threshold number of training sessions. A meta-regression analysis was used to examine the linear relationship between the training sessions and the effect on spasticity.Results: A total of 764 studies were identified. After screening, 12 selected studies were used for the qualitative synthesis, in which eight of them were quantitatively analyzed. Eight studies included ninety-nine subjects in total with SCI (male: female = 83:16). The time since injury was from less than 4 weeks to 17 years. The age ranged from 20 to 67 years. American Spinal Injury Association (ASIA) impairment level of the number of participants was 59 for ASIA A, 11 for ASIA B, 18 for ASIA C, and 11 for ASIA D. There were 43 subjects with tetraplegia and 56 subjects with paraplegia. Spasticity decreased significantly (95% CI = − 1.538 to − 0.182, p = 0.013) in favor of FES-cycling training. The walking ability and LEMS also improved significantly in favor of FES-cycling training. The subgroup analysis showed that spasticity decreased significantly only in more than 20 training sessions (95% CI = − 1.749 to − 0.149, p = 0.020). The meta-regression analysis showed training sessions and spasticity were not significantly associated (coefficient = − 0.0025, SE = 0.0129, p = 0.849, R2 analog = 0.37).Conclusion: Functional electrical stimulation-cycling training can improve spasticity, walking ability, and the strength of the lower limbs in the individuals with SCI. The number of training sessions is not linearly related to the decrease of spasticity. Twenty sessions of FES-cycling training are required to obtain the efficacy to decrease spasticity.

2020 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Antonino Casabona ◽  
Maria Stella Valle ◽  
Claudio Dominante ◽  
Luca Laudani ◽  
Maria Pia Onesta ◽  
...  

The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility. Seven adults with post-traumatic paraplegia attended two FES-cycling sessions, a 20-min and a 40-min one, in a random order. Knee angular excursion, stiffness and viscosity were measured using the pendulum test before and after each session. Surface electromyographic activity was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles. FES-cycling led to reduced excursion (p < 0.001) and increased stiffness (p = 0.005) of the knee, which was more evident after the 20-min than 40-min session. Noteworthy, biomechanical changes were associated with an increase of muscle activity and changes in latency of muscle activity only for 20-min, with anticipated response times for RF (p < 0.001) and delayed responses for BF (p = 0.033). These results indicate that significant functional changes in knee mobility can be achieved by FES-cycling for 20 min, as evaluated by the pendulum test in patients with chronic paraplegia. The observed muscle behaviour suggests modulatory effects of exercise on spinal network aimed to partially restore automatic neuronal processes.


2019 ◽  
Vol 25 (2) ◽  
pp. 105-111 ◽  
Author(s):  
E.J. McCaughey ◽  
J.E. Butler ◽  
R.A. McBain ◽  
C.L. Boswell-Ruys ◽  
A.L. Hudson ◽  
...  

2020 ◽  
pp. 833-851
Author(s):  
Poulami Ghosh ◽  
Ankita Mazumder ◽  
Anwesha Banerjee ◽  
D.N. Tibarewala

Loss or impairment in the ability of muscle movement or sensation is called Paralysis which is caused by disruption of communication of nerve impulses along the pathway from the brain to the muscles. One of the principal reasons causing paralysis is Spinal Cord Injury (SCI) and Neurological rehabilitation by using neuro-prostheses, based on Functional Electrical Stimulation (FES) is extensively used for its treatment. Impaired muscles are activated by applying small amplitude electrical current. Electromyography (EMG), the recording of biosignals generated by muscle activity during the application of FES can be used as the control signal for FES based rehabilitative devices. This method is predominantly used for restoring upper extremity functioning (wrist, hand, elbow, etc.), standing, walking (speed, pattern) in stroke patients. FES, collaborated with conventional methods, has the potential to be utilized as a useful tool for rehabilitation and restoration of muscle strength, metabolic responses etc. in paralyzed patients.


Sign in / Sign up

Export Citation Format

Share Document