scholarly journals Corrigendum: Enhancing Heat Tolerance of the Little Dogwood Cornus canadensis L. f. with Introduction of a Superoxide Reductase Gene from the Hyperthermophilic Archaeon Pyrococcus furiosus

2016 ◽  
Vol 7 ◽  
Author(s):  
Xing-Min Geng ◽  
Xiang Liu ◽  
Mikyoung Ji ◽  
William A. Hoffmann ◽  
Amy M. Grunden ◽  
...  
2018 ◽  
Vol 92 ◽  
pp. 40-44 ◽  
Author(s):  
Liang Jiang ◽  
Chunlin Huang ◽  
Bingbing Wang ◽  
Huizhen Guo ◽  
Qiang Sun ◽  
...  

2009 ◽  
Vol 151 (2) ◽  
pp. 893-904 ◽  
Author(s):  
Yang Ju Im ◽  
Mikyoung Ji ◽  
Alice Lee ◽  
Rushyannah Killens ◽  
Amy M. Grunden ◽  
...  

2005 ◽  
Vol 71 (3) ◽  
pp. 1522-1530 ◽  
Author(s):  
Amy M. Grunden ◽  
Francis E. Jenney ◽  
Kesen Ma ◽  
Mikyoung Ji ◽  
Michael V. Weinberg ◽  
...  

ABSTRACT A scheme for the detoxification of superoxide in Pyrococcus furiosus has been previously proposed in which superoxide reductase (SOR) reduces (rather than dismutates) superoxide to hydrogen peroxide by using electrons from reduced rubredoxin (Rd). Rd is reduced with electrons from NAD(P)H by the enzyme NAD(P)H:rubredoxin oxidoreductase (NROR). The goal of the present work was to reconstitute this pathway in vitro using recombinant enzymes. While recombinant forms of SOR and Rd are available, the gene encoding P. furiosus NROR (PF1197) was found to be exceedingly toxic to Escherichia coli, and an active recombinant form (rNROR) was obtained via a fusion protein expression system, which produced an inactive form of NROR until cleavage. This allowed the complete pathway from NAD(P)H to the reduction of SOR via NROR and Rd to be reconstituted in vitro using recombinant proteins. rNROR is a 39.9-kDa protein whose sequence contains both flavin adenine dinucleotide (FAD)- and NAD(P)H-binding motifs, and it shares significant similarity with known and putative Rd-dependent oxidoreductases from several anaerobic bacteria, both mesophilic and hyperthermophilic. FAD was shown to be essential for activity in reconstitution assays and could not be replaced by flavin mononucleotide (FMN). The bound FAD has a midpoint potential of −173 mV at 23°C (−193 mV at 80°C). Like native NROR, the recombinant enzyme catalyzed the NADPH-dependent reduction of rubredoxin both at high (80°C) and low (23°C) temperatures, consistent with its proposed role in the superoxide reduction pathway. This is the first demonstration of in vitro superoxide reduction to hydrogen peroxide using NAD(P)H as the electron donor in an SOR-mediated pathway.


1998 ◽  
Vol 180 (8) ◽  
pp. 2232-2236 ◽  
Author(s):  
Yoshizumi Ishino ◽  
Kayoko Komori ◽  
Isaac K. O. Cann ◽  
Yosuke Koga

ABSTRACT One of the most puzzling results from the complete genome sequence of the methanogenic archaeon Methanococcus jannaschii was that the organism may have only one DNA polymerase gene. This is because no other DNA polymerase-like open reading frames (ORFs) were found besides one ORF having the typical α-like DNA polymerase (family B). Recently, we identified the genes of DNA polymerase II (the second DNA polymerase) from the hyperthermophilic archaeonPyrococcus furiosus, which has also at least one α-like DNA polymerase (T. Uemori, Y. Sato, I. Kato, H. Doi, and Y. Ishino, Genes Cells 2:499–512, 1997). The genes in M. jannaschiiencoding the proteins that are homologous to the DNA polymerase II ofP. furiosus have been located and cloned. The gene products of M. jannaschii expressed in Escherichia colihad both DNA polymerizing and 3′→5′ exonuclease activities. We propose here a novel DNA polymerase family which is entirely different from other hitherto-described DNA polymerases.


Sign in / Sign up

Export Citation Format

Share Document