prolyl endopeptidase
Recently Published Documents


TOTAL DOCUMENTS

374
(FIVE YEARS 29)

H-INDEX

42
(FIVE YEARS 2)

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2844
Author(s):  
Joaquín Gómez-Estaca ◽  
Irene Albertos ◽  
Ana Belén Martín-Diana ◽  
Daniel Rico ◽  
Óscar Martínez-Álvarez

The present work shows a procedure to valorize non-commercial boiled shrimp to produce functional ingredients, using a combined treatment based on enzymatic hydrolysis and subsequent glycation under mild conditions. Antioxidant and prolyl endopeptidase-inhibiting activities were determined as a function of hydrolysis and glycation times (0–120 min and 0–180 min, respectively). The reaction products were characterized by determining the degree of hydrolysis, browning, fluorescent compounds, free amino acids, phenol content, Fourier transform infrared spectroscopy (FTIR), and molecular weight of the different fractions obtained. Enzymatic hydrolysis generated hydrolysates with significant antioxidant and prolyl endopeptidase-inhibiting activities. Glycation under mild conditions was used as a strategy to improve the antioxidant and potential nootropic properties of the hydrolysates. During glycation, the free amino acid content decreased, total phenols and fluorescent compounds increased significantly, and low molecular weight melanoidins were formed. The presence of peptide-glucose conjugates was also confirmed by FTIR. Glycation increased the antioxidant activities of the hydrolysates; however, their prolyl-endopeptidase-inhibiting activity was lost. Results showed that compounds with promising antioxidant (hydrolysis and glycation) and potential nootropic (hydrolysis) activities and applications in food systems were obtained from the biotechnological strategy used.


iScience ◽  
2021 ◽  
pp. 103460
Author(s):  
Karen Rosier ◽  
Molly T. McDevitt ◽  
Joél Smet ◽  
Brendan J. Floyd ◽  
Maxime Verschoore ◽  
...  

2021 ◽  
Vol 86 (6) ◽  
pp. 704-715
Author(s):  
Sofie D. Shirenova ◽  
Nadezhda N. Khlebnikova ◽  
Nataliya A. Krupina

Abstract Early-life stress is a risk factor for the development of behavioral and cognitive disorders in humans and animals. Such stressful situations include social isolation in early postnatal ontogenesis. Behavioral and cognitive impairments associated with neuroplastic changes in brain structures. We have found that after ten weeks of social isolation, male Wistar rats show behavioral abnormalities and cognitive deficit, accompanied by an increase in the relative expression of gene encoding serine protease prolyl endopeptidase (PREP, EC 3.4.21.26) in the brain frontal cortex. The present study aimed to assess synaptophysin (SYP), brain-derived neurotrophic factor precursor (proBDNF), and PREP expression using Western blot in the brain structures – the hippocampus, frontal cortex, and striatum of the rats subjected to prolonged social isolation compared with group-housed animals. Twenty Wistar rats were used for this study (10 males and 10 females). Experimental animals (5 males and 5 females) were kept one per cage for nine months, starting from the age of one month. Ten-month-old socially isolated rats showed memory deficit in passive avoidance paradigm and Morris Water Maze and reactivity to novelty reduction. We used monoclonal antibodies for the Western blot analysis of the expression of SYP, proBDNF, and PREP in the rat brain structures. Social isolation caused a proBDNF expression reduction in the frontal cortex in females and a reduction in PREP expression in the striatum in males. These data suppose that neurotrophic factors and PREP are involved in the mechanisms of behavioral and cognitive impairments observed in the rats subjected to prolonged social isolation with an early life onset.


Author(s):  
Daixi Jiang ◽  
Jianbin Zhang ◽  
Shuangzhe Lin ◽  
Yuqin Wang ◽  
Yuanwen Chen ◽  
...  

The gut-liver axis is increasingly recognized as being involved in the pathogenesis and progression of non-alcoholic fatty liver disease (NAFLD). Prolyl endopeptidase (PREP) plays a role in gut metabolic homeostasis and neurodegenerative diseases. We investigated the role of PREP disruption in the crosstalk between gut flora and hepatic steatosis or inflammation in mice with NAFLD. Wild-type mice (WT) and PREP gene knocked mice (PREPgt) were fed a low-fat diet (LFD) or high-fat diet (HFD) for 16 or 24 weeks. Murine gut microbiota profiles were generated at 16 or 24 weeks. Liver lipogenesis-associated molecules and their upstream mediators, AMP-activated protein kinase (AMPK) and sirtuin1 (SIRT1), were detected using RT-PCR or western blot in all mice. Inflammatory triggers and mediators from the gut or infiltrated inflammatory cells and signal mediators, such as p-ERK and p-p65, were determined. We found that PREP disruption modulated microbiota composition and altered the abundance of several beneficial bacteria such as the butyrate-producing bacteria in mice fed a HFD for 16 or 24 weeks. The level of butyrate in HFD-PREPgt mice significantly increased compared with that of the HFD-WT mice at 16 weeks. Interestingly, PREP disruption inhibited p-ERK and p-p65 and reduced the levels of proinflammatory cytokines in response to endotoxin and proline-glycine-proline, which guided macrophage/neutrophil infiltration in mice fed a HFD for 24 weeks. However, at 16 weeks, PREP disruption, other than regulating hepatic inflammation, displayed improved liver lipogenesis and AMPK/SIRT1 signaling. PREP disruption may target multiple hepatic mechanisms related to the liver, gut, and microbiota, displaying a dynamic role in hepatic steatosis and inflammation during NAFLD. PREP might serve as a therapeutic target for NAFLD.


Life Sciences ◽  
2021 ◽  
Vol 270 ◽  
pp. 119131
Author(s):  
Jianbin Zhang ◽  
Daixi Jiang ◽  
Shuangzhe Lin ◽  
Yuqing Cheng ◽  
Jiaxing Pan ◽  
...  

JCI Insight ◽  
2021 ◽  
Vol 6 (6) ◽  
Author(s):  
Gregory A. Payne ◽  
Nirmal S. Sharma ◽  
Charitharth V. Lal ◽  
Chunyan Song ◽  
Lingling Guo ◽  
...  

2020 ◽  
Vol 333 ◽  
pp. 127452 ◽  
Author(s):  
Wan-Yu Li ◽  
Yue Li ◽  
Yu-Lei Chen ◽  
Jian-Jian Hu ◽  
Hylemariam Mihiretie Mengist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document