scholarly journals Orthology Analysis and In Vivo Complementation Studies to Elucidate the Role of DIR1 during Systemic Acquired Resistance in Arabidopsis thaliana and Cucumis sativus

2016 ◽  
Vol 7 ◽  
Author(s):  
Marisa Isaacs ◽  
Philip Carella ◽  
Jennifer Faubert ◽  
Marc J. Champigny ◽  
Jocelyn K. C. Rose ◽  
...  
Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1661-1671
Author(s):  
Klaus Maleck ◽  
Urs Neuenschwander ◽  
Rebecca M Cade ◽  
Robert A Dietrich ◽  
Jeffery L Dangl ◽  
...  

Abstract To identify Arabidopsis mutants that constitutively express systemic acquired resistance (SAR), we constructed reporter lines expressing the firefly luciferase gene under the control of the SAR-inducible PR-1 promoter (PR-1/luc). After EMS mutagenesis of a well-characterized transgenic line, we screened 250,000 M2 plants for constitutive expression of the reporter gene in vivo. From a mutant collection containing several hundred putative mutants, we concentrated on 16 mutants lacking spontaneous hypersensitive response (HR) cell death. We mapped 4 of these constitutive immunity (cim) mutants to chromosome arms. Constitutive expression of disease resistance was established by analyzing responses to virulent Peronospora parasitica and Pseudomonas syringae strains, by RNA blot analysis for endogenous marker genes, and by determination of salicylic acid levels in the mutants. The variety of the cim phenotypes allowed us to define distinct steps in both the canonical SAR signaling pathway and a separate pathway for resistance to Erysiphe cichoracearum, active in only a subset of the mutants.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Chenggang Wang ◽  
Xiaoen Huang ◽  
Qi Li ◽  
Yanping Zhang ◽  
Jian-Liang Li ◽  
...  

Abstract Systemic acquired resistance (SAR) is a long-lasting broad-spectrum plant immunity induced by mobile signals produced in the local leaves where the initial infection occurs. Although multiple structurally unrelated signals have been proposed, the mechanisms responsible for perception of these signals in the systemic leaves are unknown. Here, we show that exogenously applied nicotinamide adenine dinucleotide (NAD+) moves systemically and induces systemic immunity. We demonstrate that the lectin receptor kinase (LecRK), LecRK-VI.2, is a potential receptor for extracellular NAD+ (eNAD+) and NAD+ phosphate (eNADP+) and plays a central role in biological induction of SAR. LecRK-VI.2 constitutively associates with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in vivo. Furthermore, BAK1 and its homolog BAK1-LIKE1 are required for eNAD(P)+ signaling and SAR, and the kinase activities of LecR-VI.2 and BAK1 are indispensable to their function in SAR. Our results indicate that eNAD+ is a putative mobile signal, which triggers SAR through its receptor complex LecRK-VI.2/BAK1 in Arabidopsis thaliana.


2013 ◽  
Vol 4 ◽  
Author(s):  
Marc J. Champigny ◽  
Marisa Isaacs ◽  
Philip Carella ◽  
Jennifer Faubert ◽  
Pierre R. Fobert ◽  
...  

Genetics ◽  
2004 ◽  
Vol 168 (4) ◽  
pp. 2197-2206 ◽  
Author(s):  
Andrew J. Heidel ◽  
Joseph D. Clarke ◽  
Janis Antonovics ◽  
Xinnian Dong

Sign in / Sign up

Export Citation Format

Share Document