Preliminary Investigations on the Role of Nitric Oxide in Systemic Acquired Resistance in the Arabidopsis thaliana-Pseudomonas syringae Pathosystem

Author(s):  
R. Buonaurio ◽  
C. Moretti ◽  
C. Caglioti ◽  
G. Arienti ◽  
C. A. Palmerini
2021 ◽  
Vol 12 ◽  
Author(s):  
Murtaza Khan ◽  
Tiba Nazar Ibrahim Al Azawi ◽  
Anjali Pande ◽  
Bong-Gyu Mun ◽  
Da-Sol Lee ◽  
...  

Nitric oxide (NO) is a signaling molecule that regulates various processes, including plant growth and development, immunity, and environmental interactions. Using high throughput RNA-seq data, we explored the role of the NO-induced ATILL6 gene in plant growth and defense using functional genomics. The atill6 mutant and wild-types were challenged with either oxidative (H2O2, MV) or nitro-oxidative (CySNO, GSNO) stress conditions, and the phenotypic results showed that ATILL6 gene differentially regulates cotyledon development frequency (CDF) as well as the root and shoot lengths of the plants. To investigate whether ATILL6 plays a role in plant basal or resistance (R)-gene-mediated defense, the plants were challenged with either virulent or avirulent strains of Pseudomonas syringae pathovar tomato (Pst) DC3000. The atill6 line showed a susceptible phenotype, higher pathogen growth, and highly reduced transcript accumulation of PR1 and PR2 genes. These results suggested that ATILL6 positively regulates plant basal defense. Furthermore, after the inoculation of atill6 with avirulent Pst (DC3000), the expressions of the PR1 and PR2 genes decreased, suggesting a positive role in R-gene-mediated resistance in protecting the plant from further spread of disease. We also investigated the role of ATILL6 in systemic acquired resistance (SAR), and the results showed that ATILL6 positively regulates SAR, as the mutant line atill6 has significantly (p ≤ 0.05) lower transcript accumulation of PR, G3DPH, and AZI genes. Overall, these results indicate that the NO-induced ATILL6 gene differentially regulates plant growth and positively regulates plant basal defense, R-gene-mediated resistance, and SAR.


2018 ◽  
Author(s):  
Aakanksha Wany ◽  
Pradeep K. Pathak ◽  
Alisdair R Fernie ◽  
Kapuganti Jagadis Gupta

AbstractNitrogen (N) is essential for growth, development and defense but, how low N affects defense and the role of Trichoderma in enhancing defense under low nitrate is not known. Low nitrate fed Arabidopsis plants displayed reduced growth and compromised local and systemic acquired resistance responses when infected with both avirulent and virulent Pseudomonas syringae DC3000. These responses were enhanced in the presence of Trichoderma. The mechanism of increased local and systemic acquired resistance mediated by Trichoderma involved increased N uptake and enhanced protein levels via modulation of nitrate transporter genes. The nrt2.1 mutant is compromised in local and systemic acquired resistance responses suggesting a link between enhanced N transport and defense. Enhanced N uptake was mediated by Trichoderma elicited nitric oxide (NO). Low NO producing nia1,2 mutant and nsHb+ over expressing lines were unable to induce nitrate transporters and thereby compromised defense in the presence of Trichoderma under low N suggesting a signaling role of Trichoderma elicited NO. Trichoderma also induced SA and defense gene expression under low N. The SA deficient NahG transgenic line and the npr1 mutant were also compromised in Trichoderma-mediated local and systemic acquired resistance responses. Collectively our results indicated that the mechanism of enhanced plant defense under low N mediated by Trichoderma involves NO, ROS, SA production as well as the induction of NRT and marker genes for systemic acquired resistance.One-sentence summaryTrichoderma enhances local and systemic acquired resistance under low nitrate nutrition


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 803-811
Author(s):  
Gregory J Rairdan ◽  
Terrence P Delaney

Abstract Salicylic acid (SA) and the NIM1/NPR1 protein have both been demonstrated to be required for systemic acquired resistance (SAR) and implicated in expression of race-specific resistance. In this work, we analyzed the role that each of these molecules play in the resistance response triggered by members of two subclasses of resistance (R) genes, members of which recognize unrelated pathogens. We tested the ability of TIR and coiled-coil-class (also known as leucine-zipper-class) R genes to confer resistance to Pseudomonas syringae pv. tomato or Peronospora parasitica in SA-depleted (NahG) and nim1/npr1 plants. We found that all of the P. syringae pv. tomato-specific R genes tested were dependent upon SA accumulation, while none showed strong dependence upon NIM1/NPR1 activity. A similar SA dependence was observed for the P. parasitica TIR and CC-class R genes RPP5 and RPP8, respectively. However, the P. parasitica-specific R genes differed in their requirement for NIM1/NPR1, with just RPP5 depending upon NIM1/NPR1 activity for effectiveness. These data are consistent with the hypothesis that at least in Arabidopsis, SA accumulation is necessary for the majority of R-gene-triggered resistance, while the role of NIM1/NPR in race-specific resistance is limited to resistance to P. parasitica mediated by TIR-class R genes.


2019 ◽  
Vol 32 (10) ◽  
pp. 1303-1313 ◽  
Author(s):  
Miriam Lenk ◽  
Marion Wenig ◽  
Kornelia Bauer ◽  
Florian Hug ◽  
Claudia Knappe ◽  
...  

Pipecolic acid (Pip) is an essential component of systemic acquired resistance, priming resistance in Arabidopsis thaliana against (hemi)biotrophic pathogens. Here, we studied the potential role of Pip in bacteria-induced systemic immunity in barley. Exudates of barley leaves infected with the systemic immunity–inducing pathogen Pseudomonas syringae pv. japonica induced immune responses in A. thaliana. The same leaf exudates contained elevated Pip levels compared with those of mock-treated barley leaves. Exogenous application of Pip induced resistance in barley against the hemibiotrophic bacterial pathogen Xanthomonas translucens pv. cerealis. Furthermore, both a systemic immunity–inducing infection and exogenous application of Pip enhanced the resistance of barley against the biotrophic powdery mildew pathogen Blumeria graminis f. sp. hordei. In contrast to a systemic immunity-inducing infection, Pip application did not influence lesion formation by a systemically applied inoculum of the necrotrophic fungus Pyrenophora teres. Nitric oxide (NO) levels in barley leaves increased after Pip application. Furthermore, X. translucens pv. cerealis induced the accumulation of superoxide anion radicals and this response was stronger in Pip-pretreated compared with mock-pretreated plants. Thus, the data suggest that Pip induces barley innate immune responses by triggering NO and priming reactive oxygen species accumulation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qingfeng Zhou ◽  
Qi Meng ◽  
Xiaomin Tan ◽  
Wei Ding ◽  
Kang Ma ◽  
...  

Systemic acquired resistance (SAR) in plants is a defense response that provides resistance against a wide range of pathogens at the whole-plant level following primary infection. Although the molecular mechanisms of SAR have been extensively studied in recent years, the role of phosphorylation that occurs in systemic leaves of SAR-induced plants is poorly understood. We used a data-independent acquisition (DIA) phosphoproteomics platform based on high-resolution mass spectrometry in an Arabidopsis thaliana model to identify phosphoproteins related to SAR establishment. A total of 8011 phosphorylation sites from 3234 proteins were identified in systemic leaves of Pseudomonas syringae pv. maculicola ES4326 (Psm ES4326) and mock locally inoculated plants. A total of 859 significantly changed phosphoproteins from 1119 significantly changed phosphopeptides were detected in systemic leaves of Psm ES4326 locally inoculated plants, including numerous transcription factors and kinases. A variety of defense response-related proteins were found to be differentially phosphorylated in systemic leaves of Psm ES4326 locally inoculated leaves, suggesting that these proteins may be functionally involved in SAR through phosphorylation or dephosphorylation. Significantly changed phosphoproteins were enriched mainly in categories related to response to abscisic acid, regulation of stomatal movement, plant–pathogen interaction, MAPK signaling pathway, purine metabolism, photosynthesis-antenna proteins, and flavonoid biosynthesis. A total of 28 proteins were regulated at both protein and phosphorylation levels during SAR. RT-qPCR analysis revealed that changes in phosphorylation levels of proteins during SAR did not result from changes in transcript abundance. This study provides comprehensive details of key phosphoproteins associated with SAR, which will facilitate further research on the molecular mechanisms of SAR.


2014 ◽  
Vol 41 (7) ◽  
pp. 768 ◽  
Author(s):  
Ben-Chang Li ◽  
Chen Zhang ◽  
Qiu-Xia Chai ◽  
Yao-Yao Han ◽  
Xiao-Yan Wang ◽  
...  

The protein encoded by AtDHyPRP1 (DOUBLE HYBRID PROLINE-RICH PROTEIN 1) contains two tandem PRD-8CMs (proline-rich domain-eight cysteine motif) and represents a new type of HyPRPs (hybrid proline-rich proteins). Confocal microscopy to transgenic Arabidopsis plants revealed that AtDHyPRP1-GFP was localised to plasmalemma, especially plasmodesmata. AtDHyPRP1 mainly expressed in leaf tissues and could be induced by salicylic acid, methyl jasmonate, virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and avirulent P. syringae pv. tomato DC3000 harbouring avrRPM1 (Pst avrRPM1), suggesting it is involved in defence response of Arabidopsis thaliana (L. Heynh.). After treatments with bacterial suspension of virulent Pst DC3000 or conidial suspension of Botrytis cinerea, AtDHyPRP1 overexpressing lines exhibited enhanced resistance, whereas AtDHyPRP1 RNA interference lines became more susceptible to the pathogens with obvious chlorosis or necrosis phenotypes. In systemic acquired resistance (SAR) analyses, distal leaves were challenged with virulent Pst DC3000 after inoculation of the primary leaves with avirulent Pst avrRPM1 (AV) or MgSO4 (MV). Compared with MV, the infection symptoms in systemic leaves of wild-type plants and AtDHyPRP1 overexpressing lines were significantly alleviated in AV treatment, whereas the systemic leaves of AtDHyPRP1 RNAi lines were vulnerable to Pst DC3000, indicating AtDHyPRP1 was functionally associated with SAR.


Sign in / Sign up

Export Citation Format

Share Document