scholarly journals Use of Phenomics for Differentiation of Mungbean (Vigna radiata L. Wilczek) Genotypes Varying in Growth Rates Per Unit of Water

2021 ◽  
Vol 12 ◽  
Author(s):  
Jagadish Rane ◽  
Susheel Kumar Raina ◽  
Venkadasamy Govindasamy ◽  
Hanumantharao Bindumadhava ◽  
Prashantkumar Hanjagi ◽  
...  

In the human diet, particularly for most of the vegetarian population, mungbean (Vigna radiata L. Wilczek) is an inexpensive and environmentally friendly source of protein. Being a short-duration crop, mungbean fits well into different cropping systems dominated by staple food crops such as rice and wheat. Hence, knowing the growth and production pattern of this important legume under various soil moisture conditions gains paramount significance. Toward that end, 24 elite mungbean genotypes were grown with and without water stress for 25 days in a controlled environment. Top view and side view (two) images of all genotypes captured by a high-resolution camera installed in the high-throughput phenomics were analyzed to extract the pertinent parameters associated with plant features. We tested eight different multivariate models employing machine learning algorithms to predict fresh biomass from different features extracted from the images of diverse genotypes in the presence and absence of soil moisture stress. Based on the mean absolute error (MAE), root mean square error (RMSE), and R squared (R2) values, which are used to assess the precision of a model, the partial least square (PLS) method among the eight models was selected for the prediction of biomass. The predicted biomass was used to compute the plant growth rates and water-use indices, which were found to be highly promising surrogate traits as they could differentiate the response of genotypes to soil moisture stress more effectively. To the best of our knowledge, this is perhaps the first report stating the use of a phenomics method as a promising tool for assessing growth rates and also the productive use of water in mungbean crop.

Soil Science ◽  
1961 ◽  
Vol 91 (5) ◽  
pp. 332-338 ◽  
Author(s):  
W. D. KEMPER ◽  
C. W. ROBINSON ◽  
H. M. GOLUS

2009 ◽  
Vol 6 (8) ◽  
pp. 1423-1444 ◽  
Author(s):  
T. Keenan ◽  
R. García ◽  
A. D. Friend ◽  
S. Zaehle ◽  
C. Gracia ◽  
...  

Abstract. Water stress is a defining characteristic of Mediterranean ecosystems, and is likely to become more severe in the coming decades. Simulation models are key tools for making predictions, but our current understanding of how soil moisture controls ecosystem functioning is not sufficient to adequately constrain parameterisations. Canopy-scale flux data from four forest ecosystems with Mediterranean-type climates were used in order to analyse the physiological controls on carbon and water flues through the year. Significant non-stomatal limitations on photosynthesis were detected, along with lesser changes in the conductance-assimilation relationship. New model parameterisations were derived and implemented in two contrasting modelling approaches. The effectiveness of two models, one a dynamic global vegetation model ("ORCHIDEE"), and the other a forest growth model particularly developed for Mediterranean simulations ("GOTILWA+"), was assessed and modelled canopy responses to seasonal changes in soil moisture were analysed in comparison with in situ flux measurements. In contrast to commonly held assumptions, we find that changing the ratio of conductance to assimilation under natural, seasonally-developing, soil moisture stress is not sufficient to reproduce forest canopy CO2 and water fluxes. However, accurate predictions of both CO2 and water fluxes under all soil moisture levels encountered in the field are obtained if photosynthetic capacity is assumed to vary with soil moisture. This new parameterisation has important consequences for simulated responses of carbon and water fluxes to seasonal soil moisture stress, and should greatly improve our ability to anticipate future impacts of climate changes on the functioning of ecosystems in Mediterranean-type climates.


2011 ◽  
Vol 63 (6) ◽  
pp. 392-392 ◽  
Author(s):  
Anil Gunaratne ◽  
Upul Kumari Ratnayaka ◽  
Nihal Sirisena ◽  
Jennet Ratnayaka ◽  
Xiangli Kong ◽  
...  

Author(s):  
Siti Mariana Che Mat Nor ◽  
Shazlyn Milleana Shaharudin ◽  
Shuhaida Ismail ◽  
Nurul Hila Zainuddin ◽  
Mou Leong Tan

Rainfall data are the most significant values in hydrology and climatology modelling. However, the datasets are prone to missing values due to various issues. This study aspires to impute the rainfall missing values by using various imputation method such as Replace by Mean, Nearest Neighbor, Random Forest, Non-linear Interactive Partial Least-Square (NIPALS) and Markov Chain Monte Carlo (MCMC). Daily rainfall datasets from 48 rainfall stations across east-coast Peninsular Malaysia were used in this study. The dataset were then fed into Multiple Linear Regression (MLR) model. The performance of abovementioned methods were evaluated using Root Mean Square Method (RMSE), Mean Absolute Error (MAE) and Nash-Sutcliffe Efficiency Coefficient (CE). The experimental results showed that RF coupled with MLR (RF-MLR) approach was attained as more fitting for satisfying the missing data in east-coast Peninsular Malaysia.


Sign in / Sign up

Export Citation Format

Share Document