scholarly journals Characterization of Arsenic-Resistant Endophytic Bacteria From Alfalfa and Chickpea Plants

2021 ◽  
Vol 12 ◽  
Author(s):  
Hazhir Tashan ◽  
Behrouz Harighi ◽  
Jalal Rostamzadeh ◽  
Abdolbaset Azizi

The present investigation was carried out to isolate arsenic (As)-resistant endophytic bacteria from the roots of alfalfa and chickpea plants grown in arsenic-contamination soil, characterize their As tolerance ability, plant growth-promoting characteristics, and their role to induce As resistance by the plant. A total of four root endophytic bacteria were isolated from plants grown in As-contaminated soil (160–260-mg As kg−1 of soil). These isolates were studied for plant growth-promoting (PGP) characteristics through siderophore, phosphate solubilization, nitrogen fixation, protease, and lipase production, and the presence of the arsenate reductase (arsC) gene. Based on 16S rDNA sequence analysis, these isolates belong to the genera Acinetobacter, Pseudomonas, and Rahnella. All isolates were found As tolerant, of which one isolate, Pseudomonas sp. QNC1, showed the highest tolerance up to 350-mM concentration in the LB medium. All isolates exhibited phosphate solubilization activity. Siderophore production activity was shown by only Pseudomonas sp. QNC1, while nitrogen fixation activity was shown by only Rahnella sp. QNC2 isolate. Acinetobacter sp. QNA1, QNA2, and Rahnella sp. QNC2 exhibited lipase production, while only Pseudomonas sp. QNC1 was able to produce protease. The presence of the arsC gene was detected in all isolates. The effect of endophytic bacteria on biomass production of alfalfa and chickpea in five levels of arsenic concentrations (0-, 10-, 50-, 75-, and 100-mg kg−1 soil) was evaluated. The fresh and dry weights of roots of alfalfa and chickpea plants were decreased as the arsenic concentration of the soil was increased. Results indicate that the fresh and dry root weights of alfalfa and chickpea plants were significantly higher in endophytic bacteria-treated plants compared with non-treated plants. Inoculation of chickpea plants with Pseudomonas sp. QNC1 and Rahnella sp. QNC2 induced lower NPR3 gene expression in chickpea roots grown in soil with the final concentration of 100-mg kg−1 sodium arsenate compared with the non-endophyte-treated control. The same results were obtained in Acinetobacter sp. QNA2-treated alfalfa plants grown in the soil plus 50-mg kg−1 sodium arsenate. These results demonstrated that arsenic-resistant endophytic bacteria are potential candidates to enhance plant-growth promotion in As contamination soils. Characterization of bacterial endophytes with plant growth potential can help us apply them to improve plant yield under stress conditions.

2021 ◽  
Vol 10 (3) ◽  
pp. 246-254
Author(s):  
Dang Thi Ngoc Thanh ◽  
Pham Thi Thu Ly ◽  
Pham Thi Nga ◽  
Pham Van Ngot

The roots of two legume species (Tephrosia purpurea and Tephrosia villosa) that grew wild on dry sandy soils of Binh Thuan province were sources for isolating plant growth-promoting endophytic bacteria. Semi-solid LGI medium was used for the isolation of nitrogen-fixing bacteria from root extracts. All bacterial isolates isolates were evaluated for their ability to solubilize calcium orthophosphate on solid NBRIP medium and their ability to produce IAA in Burk's liquid medium supplemented with 100 mg/L tryptophan. The possibilities of nitrogen fixation, phosphate solubilization and IAA synthesis were all quantitative examined by colorimetric method. Twenty-two bacterial isolates of T. purpurea and 18 isolates of T. villosa were capable of nitrogen fixation in the range of 1.94 to 2.81 mg/L NH4+, whereas only 18 isolates of T. purpurea and 16 isolates of T. villosa showed phosphate solubilization in the range of 12.30 – 48.90 mg/L P2O5, and IAA production in the range of 0.38 – 12.72 mg/L. Sixteen outstanding bacterial isolates of the two legume species were identified by MALDI-TOF technique. The results showed that 13 isolates had high similarity with five bacterial genera including Klebsiella, Cronobacter, Enterobacter, Burkholderia, and Bacillus with score values in the range of 2.070 – 2.411.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


3 Biotech ◽  
2020 ◽  
Vol 10 (7) ◽  
Author(s):  
Mohammad Sayyar Khan ◽  
Junlian Gao ◽  
Mingfang Zhang ◽  
Xuqing Chen ◽  
The Su Moe ◽  
...  

3 Biotech ◽  
2013 ◽  
Vol 4 (2) ◽  
pp. 197-204 ◽  
Author(s):  
B. Jasim ◽  
Aswathy Agnes Joseph ◽  
C. Jimtha John ◽  
Jyothis Mathew ◽  
E. K. Radhakrishnan

Author(s):  
Arti Sharma ◽  
Kamal Dev ◽  
Anuradha Sourirajan ◽  
Madhu Choudhary

Abstract Background Soil salinity has been one of the biggest hurdles in achieving better crop yield and quality. Plant growth-promoting rhizobacteria (PGPR) are the symbiotic heterogeneous bacteria that play an important role in the recycling of plant nutrients through phytostimulation and phytoremediation. In this study, bacterial isolates were isolated from salt-polluted soil of Jhajjar and Panipat districts of Haryana, India. The potential salt-tolerant bacteria were screened for their PGPR activities such as phosphate solubilization, hydrogen cyanide (HCN), indole acetic acid (IAA) and ammonia production. The molecular characterization of potent isolates with salt tolerance and PGPR activity was done by 16S rDNA sequencing. Results Eighteen soil samples from saline soils of Haryana state were screened for salt-tolerant bacteria. The bacterial isolates were analyzed for salt tolerance ranging from 2 to 10%. Thirteen isolates were found salt tolerant at varied salt concentrations. Isolates HB6P2 and HB6J2 showed maximum tolerance to salts at 10% followed by HB4A1, HB4N3 and HB8P1. All the salt-tolerant bacterial isolates showed HCN production with maximum production by HB6J2. Phosphate solubilization was demonstrated by three isolates viz., HB4N3, HB6P2 and HB6J2. IAA production was maximum in HB4A1 (15.89) and HB6P2 (14.01) and least in HB4N3 (8.91). Ammonia production was maximum in HB6P2 (12.3) and least in HB8P1 (6.2). Three isolates HB6J2, HB8P1 and HB4N3 with significant salt tolerance, and PGPR ability were identified through sequencing of amplified 16SrRNA gene and were found to be Bacillus paramycoides, Bacillus amyloliquefaciens and Bacillus pumilus, respectively. Conclusions The salt-tolerant plant growth-promoting rhizobacteria (PGPR) isolated from saline soil can be used to overcome the detrimental effects of salt stress on plants, with beneficial effects of physiological functions of plants such as growth and yield, and overcome disease resistance. Therefore, application of microbial inoculants to alleviate stresses and enhance yield in plants could be a low cost and environmental friendly option for the management of saline soil for better crop productivity.


Sign in / Sign up

Export Citation Format

Share Document