scholarly journals Would You Use It With a Seal of Approval? Important Attributes of 2,4-Dinitrophenol (2,4-DNP) as a Hypothetical Pharmaceutical Product

2018 ◽  
Vol 9 ◽  
Author(s):  
Emma E. Bleasdale ◽  
Sam N. Thrower ◽  
Andrea Petróczi
Author(s):  
Amit B Patil ◽  
Bharath Kumar B ◽  
Ajay P Karnalli

Technology Transfer (TT) is vital action from drug development in Research and Development (R and D) Department to commercial manufacturing till the product discontinuation. This review is an attempt to give an insight about the transfer of pharmaceutical product from R and D to production including necessary documents required to review the supporting documents and execution procedures in production shop floor. TT is considered effective, if there is a documented evidence that the process and its parameters, repeatedly results in desired product quality which was established upon during TT between the transferee and transferor. For the execution of TT process, expertise from different department such as Engineering, R and D, QA, process analyst and production are teamed. the transmission comprises of arrangements procured in these flows of improvement to achieve the quality as planned throughout manufacture.


2009 ◽  
Author(s):  
Mark Paich ◽  
Corey Peck ◽  
Jason Valant

2017 ◽  
Vol 68 (8) ◽  
pp. 1895-1902
Author(s):  
Ioana Cristina Tita ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Laura Vicas

Thermal analysis is one of the most frequently used instrumental techniques in the pharmaceutical research, for the thermal characterization of different materials from solids to semi-solids, which are of pharmaceutical relevance. In this paper, simultaneous thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used for characterization of the thermal behaviour of candesartan cilexetil � active substance (C-AS) under dynamic nitrogen atmosphere and nonisothermal conditions, in comparison with pharmaceutical product containing the corresponding active substance. It was observed that the commercial samples showed a different thermal profile than the standard sample, caused by the presence of excipients in the pharmaceutical product and to possible interaction of these with the active substance. The Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) were used as complementary techniques adequately implement and assist in interpretation of the thermal results. The main conclusion of this comparative study was that the TG/DTG and DSC curves, together with the FT-IR spectra, respectively X-ray difractograms constitute believe data for the discrimination between the pure substance and pharmaceutical forms.


2017 ◽  
Vol 23 (3) ◽  
pp. 350-361 ◽  
Author(s):  
Hisham Al-Obaidi ◽  
Mridul Majumder ◽  
Fiza Bari

Crystalline and amorphous dispersions have been the focus of academic and industrial research due to their potential role in formulating poorly water-soluble drugs. This review looks at the progress made starting with crystalline carriers in the form of eutectics moving towards more complex crystalline mixtures. It also covers using glassy polymers to maintain the drug as amorphous exhibiting higher energy and entropy. However, the amorphous form tends to recrystallize on storage, which limits the benefits of this approach. Specific interactions between the drug and the polymer may retard this spontaneous conversion of the amorphous drug. Some studies have shown that it is possible to maintain the drug in the amorphous form for extended periods of time. For the drug and the polymer to form a stable mixture they have to be miscible on a molecular basis. Another form of solid dispersions is pharmaceutical co-crystals, for which research has focused on understanding the chemistry, crystal engineering and physico-chemical properties. USFDA has issued a guidance in April 2013 suggesting that the co-crystals as a pharmaceutical product may be a reality; but just not yet! While some of the research is still oriented towards application of these carriers, understanding the mechanism by which drug-carrier miscibility occurs is also covered. Within this context is the use of thermodynamic models such as Flory-Huggins model with some examples of studies used to predict miscibility.


2019 ◽  
Vol 24 (42) ◽  
pp. 5081-5083 ◽  
Author(s):  
Mohd. A. Mirza ◽  
Zeenat Iqbal

Background: The last few decades have witnessed enormous advancements in the field of Pharmaceutical drug, design and delivery. One of the recent developments is the advent of 3DP technology. It has earlier been successfully employed in fields like aerospace, architecture, tissue engineering, biomedical research, medical device and others, has recently forayed into the pharmaceutical industry.Commonly understood as an additive manufacturing technology, 3DP aims at delivering customized drug products and is the most acceptable form of“personalized medicine”. Methods: Data bases and search engines of regulatory agencies like USFDA and EMA have been searched thoroughly for relevant guidelines and approved products. Other portals like PubMed and Google Scholar were also ferreted for any relevant repository of publications are referred to wherever required. Results: So far only one pharmaceutical product has been approved in this category by USFDA and stringent regulatory agencies are working over the drafting of guidelines and technical issues. Major research of this category belongs to the academic domain. Conclusion: It is also implicit to such new technologies that there would be numerous challenges and doubts before these are accepted as safe and efficacious. The situation demands concerted and cautious efforts to bring in foolproof regulatory guidelines which would ultimately lead to the success of this revolutionary technology.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


Sign in / Sign up

Export Citation Format

Share Document