amorphous form
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7227
Author(s):  
Adrian Mizera ◽  
Andrzej Kowalczyk ◽  
Lucjan Chmielarz ◽  
Ewa Drożdż

Two series of strontium titanates doped with Ni, Co, or Cu with general formula of SrTi1-xMexO3 for Sr-stoichiometric and Sr0.95Ti1−xMexO3 for Sr-non-stoichiometric materials (where Me = Ni, Co or Cu and x were 0.02 and 0.06) were obtained by the wet chemical method. The samples were calcinated at 900, 950, and 1050 °C and characterized in terms of their structural properties (XRD), the possibility of undergoing the reduction and oxidation reactions (TPR/TPOx), and catalytic properties. All obtained materials were multiphase and although the XRD analysis does not confirm the presence of Ni, Co, and Cu oxides (with one exception for Cu-doped sample), the TPR/TPOx profiles show reduction peaks that can be attributed to the reduction of these oxides which may at first appear in an amorphous form. Catalytic tests in dry reforming of methane reaction showed that the highest catalytic activity was achieved for Ni-doped materials (up to 90% of CH4 conversion) while Co and Cu-doped samples showed only a very slight catalytic effect. Additionally, the decrease in methane conversion with an increasing calcination temperature was observed for Ni-doped strontium titanates.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1440
Author(s):  
Yanan Wang ◽  
Yong Wang ◽  
Jin Cheng ◽  
Haibiao Chen ◽  
Jia Xu ◽  
...  

The amorphous form of a drug usually exhibits higher solubility, faster dissolution rate, and improved oral bioavailability in comparison to its crystalline forms. However, the amorphous forms are thermodynamically unstable and tend to transform into a more stable crystalline form, thus losing their advantages. In order to investigate and suppress the crystallization, it is vital to closely monitor the drug solids during the preparation, storage, and application processes. A list of advanced techniques—including optical microscopy, surface grating decay, solid-state nuclear magnetic resonance, broadband dielectric spectroscopy—have been applied to characterize the physicochemical properties of amorphous pharmaceutical solids, to provide in-depth understanding on the crystallization mechanism. This review briefly summarizes these characterization techniques and highlights their recent advances, so as to provide an up-to-date reference to the available tools in the development of amorphous drugs.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2773
Author(s):  
Jiaping Liu ◽  
Yaqiong Zhang ◽  
Wenwen Liu ◽  
Boyan Gao ◽  
Liangli (Lucy) Yu

A microbial transglutaminase-induced cross-linked sodium caseinate (MSC) was used to stabilize zein nanoparticles, and the study was to investigate whether zein-MSC nanoparticles (zein-MSC NPs) can be used as an encapsulation carrier for resveratrol. A group of resveratrol-loaded zein-MSC nanoparticles (Res-zein-MSC NPs) with varying zein to Res mass ratios was first prepared. The particle sizes and zeta-potentials were in the ranges from 215.00 to 225.00 nm and from −29.00 to −31.00 mV. The encapsulation efficiency (EE) of Res was also influenced by the zein to Res mass ratio, and the encapsulated Res existed in an amorphous form. The major interactions between Res and zein-MSC NPs were hydrogen bonding and hydrophobic interaction. Furthermore, compared with free Res, the photo-stability and bioaccessibility of Res-zein-MSC NPs were significantly improved. The cellular studies also showed that Res-zein-MSC NPs exhibited lower cytotoxicity and desirable anti-inflammatory activity.


2021 ◽  
Vol 11 ◽  
pp. 73-86
Author(s):  
Raghad Al Nuss ◽  
Hind El Zein

Objective: The objective of this research was to enhance the physical stability and the dissolution rate of cefdinir, a BCS class IV drug, characterized by low and variable bioavailability due to both its low solubility and low permeability. Methods: Cefdinir was loaded into the mesoporous silica (SBA-15), by using the solvent immersion method starting from different organic solvents. And then formula (F3), which exhibited the highest loading percentage, was selected to study its drug release in media with different pH (1.2, 4.5, and 6.8), and has been fully characterized by using: Fourier Transform Infrared Spectroscopy (FT-IR) Spectroscopy, Differential Scanning Calorimetry, Powder X-ray Diffraction, and has been subjected to accelerated stability tests using different temperatures and relative humidity. Drug release kinetics were studied by using the following models: Probit, Gompertz, Weibull, and Logistic. Results: The results showed a remarkable dissolution improvement of cefdinir from the loaded silica in comparison to the crystalline drug at the different studied media. Drug release behaviors were well simulated by the Weibull model for F3 in all studied media and for pure Cefdinir in phosphate buffer only, and by the Gompertz function for pure Cefdinir in HCl buffer and Acetate buffer. FTIR results showed hydrogen bonds formed between the drug and silica, DSC and PXRD results revealed the transformation of cefdinir into an amorphous form upon adsorption. Stability studies under different conditions revealed the ability of mesoporous silica to maintain the amorphous state of the drug, which has been formed upon adsorption, and to prevent re-organization in the crystal nucleus of the drug molecules. Conclusion: Thus, loading cefdinir onto mesoporous silica can be used as a promising method to enhance drug dissolution, and maintain the physical stability of its amorphous form.


Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5318
Author(s):  
Szymon Sip ◽  
Natalia Rosiak ◽  
Andrzej Miklaszewski ◽  
Patrycja Talarska ◽  
Ewa Dudziec ◽  
...  

The amorphous form of carvedilol phosphate (CVD) was obtained as a result of grinding. The identity of the obtained amorphous form was confirmed by powder X-ray diffraction (PXRD), different scanning calorimetry (DSC), and FT-IR spectroscopy. The process was optimized in order to obtain the appropriate efficiency and time. The crystalline form of CVD was used as the reference standard. Solid dispersions of crystalline and amorphous CVD forms with hydrophilic polymers (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®) were obtained. Their solubility at pH 1.2 and 6.8 was carried out, as well as their permeation through a model system of biological membranes suitable for the gastrointestinal tract (PAMPA-GIT) was established. The influence of selected polymers on CVD properties was defined for the amorphous form regarding the crystalline form of CVD. As a result of grinding (four milling cycles lasting 15 min with 5 min breaks), amorphous CVD was obtained. Its presence was confirmed by the “halo effect” on the diffraction patterns, the disappearance of the peak at 160.5 °C in the thermograms, and the changes in position/disappearance of many characteristic bands on the FT-IR spectra. As a result of changes in the CVD structure, its lower solubility at pH 1.2 and pH 6.8 was noted. While the amorphous dispersions of CVD, especially with Pluronic® F-127, achieved better solubility than combinations of crystalline forms with excipients. Using the PAMPA-GIT model, amorphous CVD was assessed as high permeable (Papp > 1 × 10−6 cm/s), similarly with its amorphous dispersions with excipients (hydroxypropyl-β-cyclodextrin, Pluronic® F-127, and Soluplus®), although in their cases, the values of apparent constants permeability were decreased.


Author(s):  
Justyna Knapik-Kowalczuk ◽  
Daniel Kramarczyk ◽  
Karolina Jurkiewicz ◽  
Krzysztof Chmiel ◽  
Marian Paluch

2021 ◽  
Vol 14 (5) ◽  
pp. 453
Author(s):  
Gabriela Wiergowska ◽  
Dominika Ludowicz ◽  
Kamil Wdowiak ◽  
Andrzej Miklaszewski ◽  
Kornelia Lewandowska ◽  
...  

To improve physicochemical properties of vardenafil hydrochloride (VAR), its amorphous form and combinations with excipients—hydroxypropyl methylcellulose (HPMC) and β-cyclodextrin (β-CD)—were prepared. The impact of the modification on physicochemical properties was estimated by comparing amorphous mixtures of VAR to their crystalline form. The amorphous form of VAR was obtained as a result of the freeze-drying process. Confirmation of the identity of the amorphous dispersion of VAR was obtained through the use of comprehensive analysis techniques—X-ray powder diffraction (PXRD) and differential scanning calorimetry (DSC), supported by FT-IR (Fourier-transform infrared spectroscopy) coupled with density functional theory (DFT) calculations. The amorphous mixtures of VAR increased its apparent solubility compared to the crystalline form. Moreover, a nearly 1.3-fold increase of amorphous VAR permeability through membranes simulating gastrointestinal epithelium as a consequence of the changes of apparent solubility (Papp crystalline VAR = 6.83 × 10−6 cm/s vs. Papp amorphous VAR = 8.75 × 10−6 cm/s) was observed, especially for its combinations with β-CD in the ratio of 1:5—more than 1.5-fold increase (Papp amorphous VAR = 8.75 × 10−6 cm/s vs. Papp amorphous VAR:β-CD 1:5 = 13.43 × 10−6 cm/s). The stability of the amorphous VAR was confirmed for 7 months. The HPMC and β-CD are effective modifiers of its apparent solubility and permeation through membranes simulating gastrointestinal epithelium, suggesting a possibility of a stronger pharmacological effect.


2021 ◽  
Vol 83 (2) ◽  
pp. 77-83
Author(s):  
Yudi Wicaksono ◽  
Viddy Agustian Rosidi ◽  
Sri Yessika Saragih ◽  
Lyta Septi Fauziah ◽  
Dwi Setyawan

Atorvastatin calcium (AC) is a statin drug used to lower cholesterol. Its crystalline form is usually found in the market with low solubility properties. The amorphization of crystalline AC is a technique used to increase its solubility however; the amorphous form has less thermodynamic stability. Therefore, to increase the solubility properties of its crystalline form, an AC coamorphous solid was prepared. This coamorphous solid was prepared using spray drying techniques, and coformers such as isonicotinamide (INA) and maleic acid (MA). Furthermore, characterization was carried out using powder X-ray diffraction, differential scanning calorimetry, fourier transform infrared spectroscopy, and scanning electron microscopy, while the solubility properties test was conducted using the shake-flask and paddle method. The results showed that the spray-dried solids were coamorphous with single-phase homogeneous systems. Furthermore, the coamorphous solids, AC-INA and AC-MA were found to have a higher Tg than the melting points of other components, and formed intermolecular interactions between them. The higher Tg and presence of intermolecular interactions indicate that coamorphous solids are more stable than the amorphous form. Therefore, the results of the solubility and dissolution test showed that the coamorphous solid of AC-INA and AC-MA have better solubility properties compared to the AC crystalline form.


Sign in / Sign up

Export Citation Format

Share Document