scholarly journals Effects of Transcranial Direct Current Stimulation Treatment for Anorexia Nervosa

2021 ◽  
Vol 12 ◽  
Author(s):  
Silvie Baumann ◽  
Tadeáš Mareš ◽  
Jakub Albrecht ◽  
Martin Anders ◽  
Kristýna Vochosková ◽  
...  

Background: Anorexia nervosa (AN) is a life-threatening illness with poor treatment outcomes. Although transcranial direct current stimulation (tDCS) is a promising non-invasive brain stimulation method, its effect in patients with AN remains unclear.Objective: This study investigated changes in maladaptive eating behavior, body mass index (BMI), and depression after 10 sessions of anodal tDCS over the left dorsolateral prefrontal cortex (DLPFC).Methods: In this double-blind, randomized controlled trial, 43 inpatients with AN were divided to receive either active (n = 22) or sham (n = 21) tDCS over the left DLPFC (anode F3/cathode Fp2, 2 mA for 30 min). All patients filled the Eating Disorder Examination Questionnaire (EDE-Q) and Zung Self-Rating Depression Scale (ZUNG), and their BMI was measured. These values were obtained repeatedly in four stages: (1) before tDCS treatment, (2) after tDCS treatment, (3) in the follow-up after 2 weeks, and (4) in the follow-up after 4 weeks.Results: Primary outcomes (EDE-Q) based on the ANOVA results do not show any between-group differences either after the active part of the study or in the follow-up. Secondary analysis reveals a reduction in some items of EDE-Q. Compared with sham tDCS, active tDCS significantly improved self-evaluation based on body shape (p < 0.05) and significantly decreased the need of excessive control over calorie intake (p < 0.05) in the 4-week follow-up. However, the results do not survive multiple comparison correction. In both sham and active groups, the BMI values improved, albeit not significantly.Conclusion: We did not observe a significant effect of tDCS over the left DLPFC on complex psychopathology and weight recovery in patients with AN. tDCS reduced the need to follow specific dietary rules and improved body image evaluation in patients with AN. Tests with a larger sample and different positions of electrodes are needed.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT03273205.

2018 ◽  
Author(s):  
Ellana Welsby ◽  
Michael Ridding ◽  
Susan Hillier ◽  
Brenton Hordacre

BACKGROUND Stroke can have devastating consequences for an individual’s quality of life. Interventions capable of enhancing response to therapy would be highly valuable to the field of neurological rehabilitation. One approach is to use noninvasive brain stimulation techniques, such as transcranial direct current stimulation, to induce a neuroplastic response. When delivered in combination with rehabilitation exercises, there is some evidence that transcranial direct current stimulation is beneficial. However, responses to stimulation are highly variable. Therefore biomarkers predictive of response to stimulation would be valuable to help select appropriate people for this potentially beneficial treatment. OBJECTIVE The objective of this study is to investigate connectivity of the stimulation target, the ipsilesional motor cortex, as a biomarker predictive of response to anodal transcranial direct current stimulation in people with stroke. METHODS This study is a double blind, randomized controlled trial (RCT), with two parallel groups. A total of 68 participants with first ever ischemic stroke with motor impairment will undertake a two week (14 session) treatment for upper limb function (Graded Repetitive Arm Supplementary Program; GRASP). Participants will be randomized 2:1 to active:sham treatment groups. Those in the active treatment group will receive anodal transcranial direct current stimulation to the ipsilesional motor cortex at the start of each GRASP session. Those allocated to the sham treatment group will receive sham transcranial direct current stimulation. Behavioural assessments of upper limb function will be performed at baseline, post treatment, 1 month follow-up and 3 months follow-up. Neurophysiological assessments will include magnetic resonance imaging (MRI), electroencephalography (EEG) and transcranial magnetic stimulation (TMS) and will be performed at baseline, post treatment, 1 month follow-up (EEG and TMS only) and 3 months follow-up (EEG and TMS only). RESULTS Participants will be recruited between March 2018 and December 2018, with experimental testing concluding in March 2019. CONCLUSIONS Identifying a biomarker predictive of response to transcranial direct current stimulation would greatly assist clinical utility of this novel treatment approach. CLINICALTRIAL Australia New Zealand Clinical Trials Registry ACTRN12618000443291; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=12618000443291 (Archived by WebCite at http://www.webcitation.org/737QOXXxt) REGISTERED REPORT IDENTIFIER RR1-10.2196/10848


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 317 ◽  
Author(s):  
Arash Bayat ◽  
Miguel Mayo ◽  
Samaneh Rashidi ◽  
Nader Saki ◽  
Ali Yadollahpour

Background: Transcranial Direct Current Stimulation (tDCS) is reportedly a potential treatment option for chronic tinnitus. The main drawbacks of previous studies are short term follow up and focusing on the efficacy of single session tDCS. This study aims to investigate the therapeutic efficacy, adverse effects (AEs) and tolerability of repeated sessions of bilateral tDCS over auditory cortex (AC) on tinnitus symptoms Methods: This will be a double-blinded randomized placebo controlled parallel trial on patients (n=90) with intractable chronic tinnitus (> 2 years) randomly divided into three groups of anodal, cathodal, and sham tDCS. In the sham treatment, after 30 sec the device will be turned OFF without informing the patients. The tDCS protocol consists of 10 sessions (daily  20 min session; 2 mA current for 5 consecutive days per week and 2 consecutive weeks) applied through 35 cm2 electrodes. The primary outcome is tinnitus handicap inventory (THI) which will be assessed pre- and post-intervention and at one month follow-up. The secondary outcomes are tinnitus loudness and distress to be assessed using a visual analogue scale (VAS) pre-intervention, and immediately, one hour, one week, and one month after last stimulation. The AEs and tolerability of patients will be evaluated after each session using a customized questionnaire. Possible interactions between the disease features and treatment response will be evaluated.   Discussion: To our knowledge this is the first study to investigate the effects of repeated sessions of tDCS on chronic tinnitus symptoms with one month follow-up. In addition, the AEs, and tolerability of patients will be studied. In addition, the possible interactions between the disease specific features including the hearing loss, laterality, type of tinnitus, and treatment response will be evaluated.   Trial registration: The study has been registered as a clinical trial in Iranian Registry of Clinical Trial (IRCT2016110124635N6) on the 01/06/2017.


Trials ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Artur Quintiliano ◽  
Tayanne Oehmen ◽  
Gianna Mastroianni Kirsztajn ◽  
Rodrigo Pegado

Abstract Background Persistent pain can lead to incapacitation requiring long-term pharmacological treatment. Up to 82% of chronic kidney disease (CKD) patients undergoing hemodialysis (HD) have chronic pain and most do not respond to usual medication. Advances in non-pharmacological treatments are necessary to promote pain relief without side effects and to restore functionality. Transcranial direct current stimulation (tDCS) promises to be a novel, cost-efficient, non-pharmacological treatment for CKD patients with chronic pain. In this study, we hypothesize that tDCS could improve pain, depression, functionality, and quality of life in patients with CKD undergoing HD. Methods/design We describe a single-center, parallel-design, double blind randomized, sham-controlled trial. Forty-five subjects with CKD undergoing HD will be randomized to a motor cortex (M1), a dorso lateral prefrontal cortex (DLPFC), or a sham group. A total of ten sessions will be administered to participants over 4 weeks using a monophasic continuous current with an intensity of 2 mA for 20 min. Participants will be evaluated at baseline, immediately after the tenth session, and at 1 week and 4 weeks of follow-up after the intervention. Pain, depression, functionality, and quality of life will be evaluated. Discussion The results from this study will provide initial clinical evidence on the efficacy and safety of tDCS in patients with CKD undergoing HD. Trial registration Brazilian Clinical Trials Registry/Registro Brasileiro de Ensaios Clínicos (ensaiosclinicos.gov.br), 1111–1216-0137. Registered on 20 June 2018.


Sign in / Sign up

Export Citation Format

Share Document