scholarly journals Tillage, Mulching and Nitrogen Fertilization Differentially Affects Soil Microbial Biomass, Microbial Populations and Bacterial Diversity in a Maize Cropping System

2021 ◽  
Vol 5 ◽  
Author(s):  
Methuselah Mang'erere Nyamwange ◽  
Ezekiel Mugendi Njeru ◽  
Monicah Mucheru-Muna

Determination of biologically active components of the soil organic matter, such as soil microbial biomass carbon (C) and nitrogen (N) can be used as indicators for variations in soil productivity due to changes in soil management. Soil agronomic management practices bring about changes in the physical and chemical properties of the soil, resulting in variations in soil microbial biomass and microbial diversity. The effects of tillage, mulch and inorganic fertilizers on soil microbial biomass C and N, microbial populations and bacterial diversity were determined from the treatment combinations which had been applied for 5 years in Central Kenyan Highlands. The test crop used was maize (Zea mays L.). The study involved conventional and minimum tillage systems, mulching and inorganic fertilizers (120 kg N/ha). Tillage (P < 0.001), mulch (P < 0.001), and fertilizer (P = 0.009) significantly affected soil microbial biomass C and N whereby minimum tillage and mulch increased soil microbial biomass C and N. Interestingly, minimum tillage and mulch recorded the highest bacteria and fungi CFUs compared to conventional tillage and inorganic fertilizers. Only fertilizer and mulch (P < 0.001) had significant effect on actinobacteria CFUs. Amplified ribosomal DNA analysis (ARDRA) showed that the highest genetic distance of 0.611 was recorded between treatments conventional tillage + no mulch + no NPK fertilizer and conventional tillage + no mulch + NPK fertilizer. The results demonstrate that minimum tillage and mulching are attractive soil agronomic management practices since they increase soil microbial biomass and bacterial diversity in agricultural soils.

2014 ◽  
Vol 34 (13) ◽  
Author(s):  
张静 ZHANG Jing ◽  
马玲 MA Ling ◽  
丁新华 DING Xinhua ◽  
陈旭日 CHEN Xuri ◽  
马伟 MA Wei

2017 ◽  
Vol 37 (23) ◽  
Author(s):  
杨文航 YANG Wenhang ◽  
秦红 QING Hong ◽  
任庆水 REN Qingshui ◽  
贺燕燕 HE Yanyan ◽  
李晓雪 LI Xiaoxue ◽  
...  

Soil Research ◽  
2014 ◽  
Vol 52 (3) ◽  
pp. 299 ◽  
Author(s):  
Mahesh Kumar Singh ◽  
Nandita Ghoshal

The impact of land-use change on soil microbial biomass carbon (C) and nitrogen (N) was studied through two annual cycles involving natural forest, degraded forest, agroecosystem and Jatropha curcas plantation. Soil microbial biomass C and N, soil moisture content and soil temperature were analysed at upper (0–10 cm), middle (10–20 cm) and lower (20–30 cm) soil depths during the rainy, winter and summer seasons. The levels of microbial biomass C and N were highest in the natural forest, followed in decreasing order by Jatropha curcas plantation, degraded forest and the agroecosystem. The highest level of soil microbial biomass C and N was observed during summer, decreasing through winter to the minimum during the rainy season. Soil microbial biomass C and N decreased with increasing soil depth for all land-use types, and for all seasons. Seasonal variation in soil microbial biomass was better correlated with the soil moisture content than with soil temperature. The microbial biomass C/N ratio increased with the soil depth for all land-use types, indicating changes in the microbial community with soil depth. It is concluded that the change in land-use pattern, from natural forest to other ecosystems, results in a considerable decrease in soil microbial biomass C and N. Jatropha plantation may be an alternative for the restoration of degraded lands in the dry tropics.


Sign in / Sign up

Export Citation Format

Share Document