scholarly journals Molecular Survey of Tick-Borne Pathogens Reveals Diversity and Novel Organisms With Veterinary and Public Health Significance in Wildlife From a National Nature Reserve of China

2021 ◽  
Vol 8 ◽  
Author(s):  
Jifei Yang ◽  
Xiaojun Wang ◽  
Jinming Wang ◽  
Zhijie Liu ◽  
Qingli Niu ◽  
...  

Wildlife is involved in the maintenance and transmission of various tick-borne pathogens. The objective of the present study was to determine the occurrence and diversity of tick-borne pathogens in free-ranging wild animals collected from Tangjiahe National Nature Reserve of China. Blood or liver samples from 13 wild animals (5 takin, 3 Himalayan goral, 3 Reeves' muntjac, 1 forest musk deer, and 1 wild boar) were collected and screened for piroplasm, Anaplasma spp., Ehrlichia spp., and spotted fever group (SFG) rickettsiae by PCR-based on different gene loci. Three Theileria species, a potential novel Theileria parasite (Theileria sp. T4) and two Anaplasma species were identified in those wildlife. Theileria capreoli was found in Himalayan goral, Reeves' muntjac, and forest musk deer; Theileria luwenshuni, Theileria uilenbergi, and a potential novel, Theileria parasite (Theileria sp. T4), were identified in takin. Meanwhile, Anaplasma bovis was identified in Himalayan goral, takin, Reeves' muntjac, forest musk deer, and wild boar; Anaplasma phagocytophilum and related strains was found in takin, Reeves' muntjac, and forest musk deer. All wildlife included in this study was negative for Babesia, Anaplasma ovis, Anaplasma marginale, Ehrlichia, and SFG rickettsiae. Moreover, coinfection involving Theileria spp. and Anaplasma spp. was observed in eight wild animals. This study provided the first evidence of tick-borne pathogens in free-ranging wild animals from the nature reserve, where contact between domestic and wild animals rarely occurs.

2018 ◽  
Vol 26 (6) ◽  
pp. 620-626 ◽  
Author(s):  
Cheng Tian ◽  
◽  
Junqing Li ◽  
Xuyu Yang ◽  
Lin Yu ◽  
...  

Pathogens ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 138 ◽  
Author(s):  
Vincent Cicculli ◽  
Maestrini Oscar ◽  
Francois Casabianca ◽  
Natacha Villechenaud ◽  
Remi Charrel ◽  
...  

To obtain a better understanding of the current magnitude of tick-borne rickettsioses in Corsica, we used molecular methods to characterize the occurrence of Rickettsia spp. in ixodid ticks collected from domestic and wild animals. The presence of Rickettsia spp. was evaluated using real-time polymerase chain reaction targeting the gltA gene and by sequencing of gltA and ompA partial genes for species identification and phylogenetic analysis. Infection rates were calculated as the maximum-likelihood estimation (MLE) with 95% confidence intervals (CI). In total, 1117 ticks belonging to four genera (Rhipicephalus, Hyalomma, Ixodes, and Dermacentor) were collected from cattle, sheep, wild boars, and companion animals during July–August 2017 and July 2018–January 2019. Overall, Rickettsia DNA was detected in 208 of 349 pools of ticks (MLE = 25.6%, 95% CI: 22.6–28.8%). The molecular analysis revealed five different rickettsial species of the spotted-fever group (SFG). We highlighted the exclusive detection of Candidatus Ri. barbariae in R. bursa and of Ri. aeschlimanii in H. marginatum. Rickettsia slovaca was detected in D. marginatus collected from wild boars. This study provides the first evidence of the presence of Ri. monacensis in I. ricinus ticks isolated from a dog in Corsica. In conclusion, our data revealed wide dispersal of SFG Rickettsiae and their arthropod hosts in Corsica, highlighting the need for surveillance of the risk of infection for people living and/or working close to infected or infested animals.


2011 ◽  
Vol 85 (5) ◽  
pp. 919-923 ◽  
Author(s):  
Avi Keysary ◽  
Roni King ◽  
Moshe Inbar ◽  
Uri Shanas ◽  
Moshe Leitner ◽  
...  

Author(s):  
Joseph Wang’ang’a Oundo ◽  
Jandouwe Villinger ◽  
Maamun Jeneby ◽  
George Ong’amo ◽  
Moses Yongo Otiende ◽  
...  

AbstractBackgroundThe role of questing ticks in the epidemiology of tick-borne diseases in Kenya’s Maasai Mara National Reserve (MMNR), an ecosystem with intensified human-wildlife-livestock interactions, remains poorly understood. Therefore, we carried out a survey of the diversity of questing ticks, their blood-meal hosts, and tick-borne pathogens to understand potential effects to human and livestock health.MethodsQuesting ticks were collected by flagging and hand picks from vegetation in 25 localities and identified based on morphologic and molecular criteria. We used PCR with high-resolution melting (HRM) analysis, and sequencing to identify Anaplasma, Babesia, Coxiella, Ehrlichia, Rickettsia, and Theileria pathogen diversities and blood meals in 231 tick pools.ResultsA total of 1,465 host-seeking ticks were collected, including Rhipicephalus appendiculatus (n = 1,125), Rhipicephalus pulchellus (n = 6), Rhipicephalus evertsi (n = 5), Amblyomma cf. gemma (n = 178), Amblyomma gemma (n = 145), Amblyomma variegatum (n = 4), Amblyomma sp. (n = 1), and Haemaphysalis leachi (n = 1). Remnant blood-meals from humans, wildebeest, and African buffalo were detected in Rh. appendiculatus, goat in Rh. evertsi, sheep in Am. gemma, and cattle in Am. variegatum. Rickettsia africae was detected in Am. gemma (1/25 pools) that had blood-meal remnant from sheep and Am. variegatum (4/25 pools) that had fed on cattle. Rickettsia spp. were found in Am. gemma (4/25 pools) and Rh. evertsi (1/4 pools). Anaplasma ovis was detected in Rh. appendiculatus (1/172 pools) and Rh. evertsi (1/4 pools), while Anaplasma bovis was detected in Rh. appendiculatus (1/172 pools). Theileria parva was detected in Rh. appendiculatus (27/172 pools). Babesia, Ehrlichia and Coxiella pathogens were not found in any ticks. Unexpectedly, diverse Coxiella sp. endosymbionts were detected in all tick genera (174/231 pools).ConclusionsThe data shows that ticks from the rapidly-changing MMNR are infected with zoonotic R.africae and unclassified Rickettsia spp, demonstrating the persistent risk of African tick-bite fever and other and Spotted Fever Group rickettsioses to local dwellers and visitors to the Maasai Mara ecosystem. Protozoan pathogens that may pose risk to livestock production were also identified. We also highlight possible existence of morphotypic variants of Amblyomma species, based on the observation of Ambyomma cf. gemma, which may be potential human parasites or emergent disease vectors. Our findings also demonstrate that questing ticks in this ecosystem have dynamic vertebrate blood sources including humans, wildlife and domestic animals, which may amplify transmission of tickborne zoonoses and livestock diseases. Further studies are needed to determine the role of Coxiella endosymbionts in tick physiology and vector competence.


Biologia ◽  
2011 ◽  
Vol 66 (6) ◽  
Author(s):  
Katarína Štefanidesová ◽  
Eva Špitalská ◽  
Ivan Krkoš ◽  
Elena Smetanová ◽  
Elena Kocianová

AbstractTick-borne bacterial zoonoses of livestock and free-ranging ungulates caused by Anaplasma spp. are common in Central Europe. The aim of this study was to analyze the prevalence of Anaplasma phagocytophilum and other tick-borne bacteria in wild animals from western Slovakia. Infection with A. phagocytophilum was recorded in 62.86% of analyzed roe deer (Capreolus capreolus), in two red deer (Cervus elaphus) and two wild boars (Sus scrofa). Dermacentor reticulatus and Ixodes ricinus ticks collected on red deer were not A. phagocytophilum-infected. However, spotted fever group rickettsiae were detected in ticks collected from red deer. High prevalence of A. phagocytophilum in roe deer as well as positive red deer and wild boars suggest the occurrence of natural foci in western Slovakia.


2020 ◽  
Vol 7 (4) ◽  
pp. 157
Author(s):  
Aitor Garcia-Vozmediano ◽  
Giorgia Giglio ◽  
Elisa Ramassa ◽  
Fabrizio Nobili ◽  
Luca Rossi ◽  
...  

We investigated the distribution of Dermacentor spp. and their infection by zoonotic bacteria causing SENLAT (scalp eschar neck lymphadenopathy) in Turin province, northwestern Italy. We collected ticks in a mountain and in a periurban park, from vegetation and different animal sources, and we sampled tissues from wild boar. Dermacentor marginatus (n = 121) was collected in both study areas, on vegetation, humans, and animals, while D. reticulatus (n = 13) was exclusively collected on wild boar from the periurban area. Rickettsia slovaca and Candidatus Rickettsia rioja infected 53.1% of the ticks, and R. slovaca was also identified in 11.3% of wild boar tissues. Bartonella spp. and Francisella tularensis were not detected, however, Francisella-like endosymbionts infected both tick species (9.2%). Our findings provide new insights on the current distribution of Dermacentor spp. and their infection with a spotted-fever group rickettsiae in the Alps region. Wild boar seem to play a major role in their eco-epidemiology and dispersion in the study area. Although further studies are needed to assess the burden of rickettsial diseases, our results highlight the risk of contracting SENLAT infection through Dermacentor spp. bites in the region.


Sign in / Sign up

Export Citation Format

Share Document