scholarly journals Spectrophotometric Assay of Sulphacetamide Sodium in Ophthalmic Preparation Using 2,6-Dihydroxytoluene as a New Coupling Agent

2019 ◽  
Vol 28 (3) ◽  
pp. 116-127 ◽  
Author(s):  
Saad Sultan
Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2925 ◽  
Author(s):  
Arianna Ricci ◽  
Giuseppina Paola Parpinello ◽  
Nemanja Teslić ◽  
Paul Andrew Kilmartin ◽  
Andrea Versari

Twenty commercially available oenological tannins (including hydrolysable and condensed) were assessed for their antiradical/reducing activity, comparing two analytical approaches: The 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging spectrophotometric assay and the cyclic voltammetry (CV) electrochemical method. Electrochemical measurements were performed over a −200 mV–500 mV scan range, and integrated anodic currents to 500 mV were used to build a calibration graph with (+)-catechin as a reference standard (linear range: From 0.0078 to 1 mM, R2 = 0.9887). The CV results were compared with the DPPH• assay (expressed as % of radical scavenged in time), showing high correlation due to the similarity of the chemical mechanisms underlying both methods involving polyphenolic compounds as reductants. Improved correlation was observed by increasing the incubation time with DPPH• to 24 h (R2 = 0.925), demonstrating that the spectrophotometric method requires a long-term incubation to complete the scavenging reaction when high-molecular weight tannins are involved; this constraint has been overcome by using instant CV measurements. We concluded that the CV represents a valid alternative to the DPPH• colorimetric assay, taking advantage of fast analysis and control on the experimental conditions and, because of these properties, it can assist the quality control along the supply chain.


2021 ◽  
pp. 174751982098715
Author(s):  
Khethobole C Sekgota ◽  
Michelle Isaacs ◽  
Heinrich C Hoppe ◽  
Ronnett Seldon ◽  
Digby F Warner ◽  
...  

Propylphosphonic acid anhydride has been successfully used as a coupling agent in the synthesis of a series of indolizine-2-carboxamido derivatives from indolizine-2-carboxylic acid and its 3-acetylated analogue. The acid substrates were obtained by saponification of the corresponding methyl esters produced, in turn, selectively and efficiently, by time-controlled cyclisation of a single Morita–Baylis–Hillman adduct. Various amino and hydrazino compounds with medicinal potential have been used to prepare indolizine-2-carboxamido and hydrazido derivatives.


Author(s):  
Bingfeng Shi ◽  
Jianhua Lv ◽  
Ying Liu ◽  
Yang Xiao ◽  
Changli Lü

Driven by the instability of perovskite quantum dots (PQDs), different encapsulation techniques are used to improve stability of PQDs. However, further improvements in the extreme environmental tolerance and polar solvent...


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.


Sign in / Sign up

Export Citation Format

Share Document