scholarly journals Improved Hydrophobicity of Macroalgae Biopolymer Film Incorporated with Kenaf Derived CNF Using Silane Coupling Agent

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2254
Author(s):  
Adeleke A. Oyekanmi ◽  
N. I. Saharudin ◽  
Che Mohamad Hazwan ◽  
Abdul Khalil H. P. S. ◽  
Niyi G. Olaiya ◽  
...  

Hydrophilic behaviour of carrageenan macroalgae biopolymer, due to hydroxyl groups, has limited its applications, especially for packaging. In this study, macroalgae were reinforced with cellulose nanofibrils (CNFs) isolated from kenaf bast fibres. The macroalgae CNF film was after that treated with silane for hydrophobicity enhancement. The wettability and functional properties of unmodified macroalgae CNF films were compared with silane-modified macroalgae CNF films. Characterisation of the unmodified and modified biopolymers films was investigated. The atomic force microscope (AFM), SEM morphology, tensile properties, water contact angle, and thermal behaviour of the biofilms showed that the incorporation of Kenaf bast CNF remarkably increased the strength, moisture resistance, and thermal stability of the macroalgae biopolymer films. Moreover, the films’ modification using a silane coupling agent further enhanced the strength and thermal stability of the films apart from improved water-resistance of the biopolymer films compared to unmodified films. The morphology and AFM showed good interfacial interaction of the components of the biopolymer films. The modified biopolymer films exhibited significantly improved hydrophobic properties compared to the unmodified films due to the enhanced dispersion resulting from the silane treatment. The improved biopolymer films can potentially be utilised as packaging materials.

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 755 ◽  
Author(s):  
Lijie Huang ◽  
Hanyu Zhao ◽  
Tan Yi ◽  
Minghui Qi ◽  
Hao Xu ◽  
...  

Because of its non-toxic, pollution-free, and low-cost advantages, environmentally-friendly packaging is receiving widespread attention. However, using simple technology to prepare environmentally-friendly packaging with excellent comprehensive performance is a difficult problem faced by the world. This paper reports a very simple and environmentally-friendly method. The hydroxyl groups of cellulose nanofibrils (CNFs) were modified by introducing malic acid and the silane coupling agent KH-550, and the modified CNF were added to cassava starch as a reinforcing agent to prepare film with excellent mechanical, hydrophobic, and barrier properties. In addition, due to the addition of malic acid and a silane coupling agent, the dispersibility and thermal stability of the modified CNFs became significantly better. By adjusting the order of adding the modifiers, the hydrophobicity of the CNFs and thermal stability were increased by 53.5% and 36.9% ± 2.7%, respectively. At the same time, the addition of modified CNFs increased the tensile strength, hydrophobicity, and water vapor transmission coefficient of the starch-based composite films by 1034%, 129.4%, and 35.95%, respectively. This material can be widely used in the packaging of food, cosmetics, pharmaceuticals, and medical consumables.


Author(s):  
Yun Oh ◽  
Jeong Seok Kang ◽  
Min-Kang Seo ◽  
Min Sang Lee ◽  
Lee Ku Kwac ◽  
...  

To expand the application scope and increase the demand for non-crimp fabrics (NCFs) as a lightweight vehicle material, the delamination and thermal strain in NCF composites must be restricted. Accordingly, to simultaneously improve the interfacial bonding and thermal stability of the NCF composites, in this study the epoxy resin, in which SiO2 nanoparticles was modified by a silane coupling agent, were infused to the stacked NCFs and between the layers of NCFs through the vacuum-assisted resin infusion molding (VARIM) process.


2012 ◽  
Vol 482-484 ◽  
pp. 1275-1280 ◽  
Author(s):  
Zong Qiang Zeng ◽  
Hong Chao Liu ◽  
He Ping Yu ◽  
Zheng Peng

The rice husk ash/natural rubber (RHA/NR) composites were prepared by latex blending process using the RHA modified with silane coupling agent. The structure and morphology of modified RHA were studied. The dispersing performance of modified RHA in the composites was evaluated from the structure and thermal properties. The results indicate that silane coupling agent KH-570 can react with the carboxyl of the RHA surface, leading to a significant decrease in carboxyl absorption intensity and the obvious improvement in the dispersion of RHA particles in rubber matrix. As the modified RHA having grafted onto NR molecular chains can increase the interface force between RHA and rubber matrix, the thermal stability of RHA/NR composites thus can be improved. The RHA/NR composite of highest thermal stability can be prepared with RHA load of 5% shows the best.


Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1928 ◽  
Author(s):  
Jingmeng Sun ◽  
Yao Pang ◽  
Yingni Yang ◽  
Junqi Zhao ◽  
Rongqi Xia ◽  
...  

Composites using agricultural and forestry residues as raw materials with potentially high-performance, multifunctional and biodegradable ecological advantages, are viewed as very promising for new-generation lightweight and low-cost bio-based sustainable building materials. At present, the research on wood-plastic composite materials is relatively mature. However, it is still a challenge to effectively use other biomass and improve the interface of the high-polymer compound system. Herein, we proposed a simple and effective method to enhance the interfacial adhesion properties of rice husk fibre and High Density Polyethylene (HDPE) composites by the silane coupling agent KH-550 and compatibilizer Maleic anhydride grafted polyethylene (MAPE) with complementary modification. It was found that the coupling agent KH-550 cross-linked with the hydroxyl group on the husk fibre surface and solidified with the high polymer by –NH–, –C=O– functional group generation. Compatibilizer MAPE strengthened the two phases by covalently bonding with an ester linkage and lowered the roughness of the cross-section of the composites. Meanwhile the modification enhanced the dispersibility, and mechanical properties of the husk-high polymer compound system, the bending and flexural strength were improved by 11.5% and 28.9% with KH-550, and MAPE added, respectively. The flexural strength of the composites increased by 40.7% after complementary modification. Furthermore, the complementary modification treatment reduced the hydrophilic hydroxyl groups and increased the molecular chain to improve the water-resistance, elastic modulus and toughness of the composite. This study prepared a bio-composite, which is expected to expand the use of agricultural and forestry residues as an extension of wood-plastic composites.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 309
Author(s):  
Yurong Wu ◽  
Longshan Xu ◽  
Yanying Jiang

A uniform, monodispersed superfine cuprous oxide (Cu2O) sphere with a mean diameter of 850 nm has been synthesized by solution reduction. The study reported the synthesis and thermal properties of Cu2O/PP composites for the first time. The surface modification of the superfine Cu2O sphere was carried out by using a silane coupling agent KH-570. Fourier-transform infrared (FTIR) spectroscopy and the thermogravimetric analysis (TGA) curve revealed that the Cu2O had been successfully modified by silane coupling agent KH570. The scanning electron microscope (SEM) shows that the modified Cu2O can be uniformly dispersed in the polypropylene (PP) matrix, because through surface modification, there are some active functional groups on its surface, such as the ester group, which improves its compatibility with the PP matrix. The thermal stability of Cu2O/PP composites was improved by adding a small amount of Cu2O (1 wt % of PP). Therefore, based on the potential bacteriostasis of cuprous oxide, the low cost of PP and the results of this study, it is predicted that Cu2O/PP composites can be used in infant preparation (such as milk bottles) with low cost and good thermal stability in the near future.


2011 ◽  
Vol 236-238 ◽  
pp. 1467-1471 ◽  
Author(s):  
Ya Lan Liu ◽  
Shi Jie Shen ◽  
Li Zhang ◽  
Ling Min Shao

In this paper, two types of fiber surface treatment methods, namely heat treatment and chemical coupling, were used to improve the basalt fiber surface properties. The basalt fiber surface was heated under 250Celsius degree for 30minites, and then was treated by silane coupling agent ethanol solution with different concentrations. X-ray photoelectron spectroscopy (XPS) was utilized to study the surface chemical compositions of basalt fiber after treatments. The XPS analysis indicated that chemical bonds between basalt fiber and KH-550 have occurred, and silanols were adsorbed to the surface of basalt fibers by an ether linkage between the silanols and the hydroxyl groups of the fibers. When the concentration of KH-550 is 0.8wt%, the optimal bonding condition is formed between basalt fiber and silane coupling agent.


2001 ◽  
Vol 4 (3) ◽  
pp. H1 ◽  
Author(s):  
Hideo Notsu ◽  
Taishi Fukazawa ◽  
Tetsu Tatsuma ◽  
Donald A. Tryk ◽  
Akira Fujishima

Polymer Korea ◽  
2014 ◽  
Vol 38 (6) ◽  
pp. 787-790
Author(s):  
Dong Su Lee ◽  
Seul-Yi Lee ◽  
Byung-Gak Min ◽  
Young Soo Seo ◽  
Bong Han Lee ◽  
...  

2014 ◽  
Vol 32 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Guojun Cheng ◽  
Jiaqi Luo ◽  
Jiasheng Qian ◽  
Jibin Miao

AbstractTitanium nitride (TiN) nano-particles were subjected to graft modification by silane coupling agent (KH-570) via a direct blending method. The hydroxyl groups on the surface of TiN nano-particles can interact with silanol groups [-Si-OCH3] of KH-570 forming an organic coating layer. The covalent bonds (Ti-O-Si) formation was testified by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). Through transmission electron micrograph (TEM) observations, it was found that KH-570 could improve the dispersibility of nano-TiN particles in ethyl acetate. Thermo gravimetric analysis (TGA) and contact angle measurements indicated that KH-570 molecules were adsorbed or anchored on the surface of nano-TiN particle and the net efficiency of it was 22.76 %, which facilitated to hinder the aggregation of nano-TiN particles.


Sign in / Sign up

Export Citation Format

Share Document