scholarly journals Cover Time in Edge-Uniform Stochastically-Evolving Graphs

Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 149 ◽  
Author(s):  
Ioannis Lamprou ◽  
Russell Martin ◽  
Paul Spirakis

We define a general model of stochastically-evolving graphs, namely the edge-uniform stochastically-evolving graphs. In this model, each possible edge of an underlying general static graph evolves independently being either alive or dead at each discrete time step of evolution following a (Markovian) stochastic rule. The stochastic rule is identical for each possible edge and may depend on the past k ≥ 0 observations of the edge’s state. We examine two kinds of random walks for a single agent taking place in such a dynamic graph: (i) The Random Walk with a Delay (RWD), where at each step, the agent chooses (uniformly at random) an incident possible edge, i.e., an incident edge in the underlying static graph, and then, it waits till the edge becomes alive to traverse it. (ii) The more natural Random Walk on what is Available (RWA), where the agent only looks at alive incident edges at each time step and traverses one of them uniformly at random. Our study is on bounding the cover time, i.e., the expected time until each node is visited at least once by the agent. For RWD, we provide a first upper bound for the cases k = 0 , 1 by correlating RWD with a simple random walk on a static graph. Moreover, we present a modified electrical network theory capturing the k = 0 case. For RWA, we derive some first bounds for the case k = 0 , by reducing RWA to an RWD-equivalent walk with a modified delay. Further, we also provide a framework that is shown to compute the exact value of the cover time for a general family of stochastically-evolving graphs in exponential time. Finally, we conduct experiments on the cover time of RWA in edge-uniform graphs and compare the experimental findings with our theoretical bounds.

10.37236/3398 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Natasha Komarov ◽  
Peter Winkler

We show that the expected time for a smart "cop"' to catch a drunk "robber" on an $n$-vertex graph is at most $n + {\rm o}(n)$. More precisely, let $G$ be a simple, connected, undirected graph with distinguished points $u$ and $v$ among its $n$ vertices. A cop begins at $u$ and a robber at $v$; they move alternately from vertex to adjacent vertex. The robber moves randomly, according to a simple random walk on $G$; the cop sees all and moves as she wishes, with the object of "capturing" the robber—that is, occupying the same vertex—in least expected time. We show that the cop succeeds in expected time no more than $n {+} {\rm o}(n)$. Since there are graphs in which capture time is at least $n {-} o(n)$, this is roughly best possible. We note also that no function of the diameter can be a bound on capture time.


2012 ◽  
Vol 23 (04) ◽  
pp. 779-802 ◽  
Author(s):  
KEQIN LI

We propose a model of dynamically evolving random networks and give an analytical result of the cover time of the simple random walk algorithm on a dynamic random symmetric planar point graph. Our dynamic network model considers random node distribution and random node mobility. We analyze the cover time of the parallel random walk algorithm on a complete network and show by numerical data that k parallel random walks reduce the cover time by almost a factor of k. We present simulation results for four random walk algorithms on random asymmetric planar point graphs. These algorithms include the simple random walk algorithm, the intelligent random walk algorithm, the parallel random walk algorithm, and the parallel intelligent random walk algorithm. Our random network model considers random node distribution and random battery transmission power. Performance measures include normalized cover time, probability distribution of the length of random walks, and load distribution.


2013 ◽  
Vol 10 (86) ◽  
pp. 20130486 ◽  
Author(s):  
Tomoko Sakiyama ◽  
Yukio-Pegio Gunji

In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.


1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


Sign in / Sign up

Export Citation Format

Share Document