PERFORMANCE ANALYSIS AND EVALUATION OF RANDOM WALK ALGORITHMS ON WIRELESS NETWORKS

2012 ◽  
Vol 23 (04) ◽  
pp. 779-802 ◽  
Author(s):  
KEQIN LI

We propose a model of dynamically evolving random networks and give an analytical result of the cover time of the simple random walk algorithm on a dynamic random symmetric planar point graph. Our dynamic network model considers random node distribution and random node mobility. We analyze the cover time of the parallel random walk algorithm on a complete network and show by numerical data that k parallel random walks reduce the cover time by almost a factor of k. We present simulation results for four random walk algorithms on random asymmetric planar point graphs. These algorithms include the simple random walk algorithm, the intelligent random walk algorithm, the parallel random walk algorithm, and the parallel intelligent random walk algorithm. Our random network model considers random node distribution and random battery transmission power. Performance measures include normalized cover time, probability distribution of the length of random walks, and load distribution.

2000 ◽  
Vol 14 (08) ◽  
pp. 869-876
Author(s):  
MIRCEA ANDRECUT

A simple random walk learning algorithm for associative memories is described. The Hebbian memory matrix optimized by the random walk algorithm leads to a perfect learning in associative memories. Also, in the special case of a binary memory matrix, the random walk learning algorithm leads to an increase of the critical storage density from α c = 0.102 to α c = 0.25.


2013 ◽  
Vol 10 (86) ◽  
pp. 20130486 ◽  
Author(s):  
Tomoko Sakiyama ◽  
Yukio-Pegio Gunji

In reports addressing animal foraging strategies, it has been stated that Lévy-like algorithms represent an optimal search strategy in an unknown environment, because of their super-diffusion properties and power-law-distributed step lengths. Here, starting with a simple random walk algorithm, which offers the agent a randomly determined direction at each time step with a fixed move length, we investigated how flexible exploration is achieved if an agent alters its randomly determined next step forward and the rule that controls its random movement based on its own directional moving experiences. We showed that our algorithm led to an effective food-searching performance compared with a simple random walk algorithm and exhibited super-diffusion properties, despite the uniform step lengths. Moreover, our algorithm exhibited a power-law distribution independent of uniform step lengths.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2014 ◽  
Vol 38 (8) ◽  
pp. 753-763 ◽  
Author(s):  
D.P. Onoma ◽  
S. Ruan ◽  
S. Thureau ◽  
L. Nkhali ◽  
R. Modzelewski ◽  
...  

1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


Sign in / Sign up

Export Citation Format

Share Document